


at least, does not detract. Our preferred tectonic forecast is
available (and will be submitted) for independent prospective
testing, which will help to judge the validity of our assump-
tions. However, our own retrospective testing has already
shown that this model performs about as well as one mature,
optimized, smoothed-seismicity model. Thus, availableGPS
data (supplemented by a plate-tectonic model, especially off-
shore) now have about the same value for forecasting condi-
tional probabilities (map patterns) of future earthquakes as
modern seismic catalogs.

An important change in GSMR2.1 (in addition to the
greatly improvedGPSdataset on land) was the deliberate sim-
plification of most offshore plate boundaries to narrow lines.
This eliminated the somewhat subjective use of instrumental
seismicity maps to locally vary the widths of plate boundaries
that was a feature of the originalGSRM of Kreemeret al.
(2003) and was inherited by the previous global seismicity
model ofBird et al. (2010). Although we found in this study
that we had to smooth the activity of these offshore plate boun-
daries to obtain good forecast scores, we have now done this in

a more systematic way that uses less than a dozen parametric
measures from the instrumental seismic catalog, but not its
complete map. Thus, the present update more closely ap-
proaches the abstract ideal of being purely tectonic, whereas
the previousSHIFT-GSRM seismicity model ofBird et al.
(2010)had a greater component of future projection of past
instrumental seismicity in its map patterns.

This sets the stage for systematically and formally con-
sidering the potential added value of hybrid models with both
tectonic and smoothed-seismicity components, which we in-
tend to present in a future article. Practical earthquake fore-
casting may require all relevant information to be combined;
yet, scientific hypothesis testing is more straightforward
when distinct kinds of information are also developed sep-
arately into alternative models.

Data and Resources

The files necessary to fully represent our seismicity fore-
casts are much larger than the files needed to create them;
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Figure 7. Global cumulative frequency–magnitude distribution of preferred modelSHIFT-GSRM2f compared with the distributions of
two global seismic catalogs: the International Seismological Centre-Global Earthquake Model (ISC-GEM) catalog ofStorchaket al.(2012)
for years 1918–1976 (including its supplement) and the Global Centroid Moment Tensor (CMT) catalog ofEkströmet al. (2012)for years
1977–2012. The increased Global CMT rate in 2004–2012 is also shown with a dashed curve. All curves are normalized to 100 years of
observation and are restricted to shallow earthquakes, with hypocentroids no deeper than 70 km.
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http://peterbird.name/guide/grd_format.htm
http://www.globalcmt.org
http://www.globalcmt.org
www.globalcmt.org/CMTfiles.html
http://peterbird.name/oldFTP/2003107-esupp/eqc_format.pdf
http://peterbird.name/oldFTP/SHIFT_GSRM2_forecast/underwater.grd.zip


For prospective testing, all available catalog years
should be used for calibration. This will change the global
seismicity rate of the model, as well as the balance between
zones. For example, computing a model based on Global
CMT years 1977–2013 gives a global shallow seismicity rate
that is 6.5% greater than when only years 1977–2004 are
used for calibration; this is because of the 26.7% increase in
global shallow seismicity that occurred at the end of 2004.

The applicable time window of this forecast starts im-
mediately after the calibration period and is conceptually open
(infinitely extended) into the future, although for any currently
existingCSEPtest class an end date must be chosen. In prac-
tical terms, we might expect that continued collection ofGPS
data and improved knowledge of plate boundaries will even-
tually result in a replacement model.
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