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Geodetic network optimization for geophysical parameters

Geoffrey Blewitt
Nevada Bureau of Mines and Geology, and Seismological Laboratory, University of Nevada, Reno, Nevada

Abstract.  The first order design problem in geodesy is gener-
alized here, to seek the network configuration that optimizes
the precision of geophysical parameters.  An optimal network
design that satisfies intuitively appropriate criteria corresponds
to minimizing the sum of logarithmic variances of
eigenparameters.  This is equivalent to maximizing the deter-
minant of the design matrix, allowing for closed-form analysis.
An equivalent expression is also given specifically for square
root information filtering, to facilit ate numerical solution.  Ap-
propriate seeding of numerical solutions can be provided by
exact analytical solutions to idealized models.  For example,
for an ideal transform fault, simultaneous resolution of both
the locking depth D and location of the fault is optimized by
placing stations at 3D±  (~9 km) from the a priori fault
plane.  In a two-fault system, the resolution of slip partitioning
is optimized by including a station midway between faults;
however resolution is fundamentally limited for fault separa-
tion <2D (~30 km).

1.  Introduction

“First order design”  in geodesy is the problem of finding
the schedule of observations that optimizes the precision of
estimated network geometry [Vanicek and Krakiwsky, 1982].
To today’s investigator using the Global Positioning System
(GPS), optimizing coordinate precision through improved
network design is no longer a serious consideration [Zumberge
et al., 1997].  In contrast, this paper addresses network design
that optimizes geophysical parameter precision.  This is a
timely topic, given new initiatives such as the Plate Boundary
Observatory, and the general rapid growth of GPS networks
for geophysical research [Segall and Davis, 1997].

For a given network, the Network Inversion Filter by Segall
and Matthews [1997] is state-of-the-art, addressing
geophysical parameter resolution and accounting for correlated
errors.  This might be incorporated into a heuristic approach to
network design, but as of yet, there is no systematic method to
design networks for geophysical investigations.  A comple-
mentary and potentially insightful approach is to formalize the
design problem, enabling closed-form analysis.  This paper
derives results for examples of ideal models, which can then
be used to seed algorithmic searches for solutions to more so-
phisticated geophysical models and filtering techniques. An
optimization functional specific to square root information fil-
tering (SRIF) is presented here, which would facilit ate eff i-
cient stochastic modeling.
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2.  Formalizing the Problem

2.1.  Geodetic Model

Given n stations at positions ri for i=1,2,3…m, let geodesy
provide estimates of m station velocities ui with the m × m co
variance matrix C.  The relevant velocity vectors ui may have
1, 2, or 3 components.  For least-squares estimation of the
geophysical parameters, ui will be used as input data, and the
inverse of C will be the fully populated data weight matrix, W.
Although the data type is station velocity, the following could
be adapted to time series of displacements, thus
accommodating models with explicit time dependence.

2.2.  Geophysical functional model

Assume that each station velocity vector ui can be written as
an analytical function of station position ri and geophysical
parameters gk for k=1,2,3…n:
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The explicit dependence on only the local station’s position
assumes that the zero order design (i.e., the velocity datum) is
in accordance with the geophysical model.  Specification of an
appropriate velocity datum is usually achievable using global
geodetic networks. While this is not essential to the physics, it
does allow for the simple form of equation (1).

2.3. Geophysical Parameter Precision

The following shows formally how parameter precision de-
pends on network design.  In preparation for weighted least
squares analysis, equation (1) is linearized about provisional
parameter values (denoted by tildes):
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where the design matrix A (m × n) contains partial derivatives
of the velocity model with respect to the geophysical parame-
ters, evaluated at the provisional values
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The variances and covariances of the estimated parameters are
given by the matrix
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This emphasizes P as a function of all station positions and
provisional parameters.
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2.4.  Generalized First Order Design

Matrix P characterizes the precision of the parameters.  Let
us characterize overall precision by a single number, which
can be minimized by varying the station locations. Consider
first an optimization functional J, which is some (as yet unde-
fined) function of the covariance matrix:
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For each trial network defined by the set },2,1|{ mii �=r , ex-
pression (5) would yield a single number for assessment.

Now let us vary this functional by perturbing every station
position by a small amount i/U :
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The set of station positions ir
�

 that minimizes this functional is
such that variation is zero for any arbitrary set of station per-
turbations. For every station i, the solution must satisfy
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This is a system of m equations, each with a different vector
function K i of each station, for which we seek m unknown po-
sitions mr,,r,r
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21 .  The problem of generalized first order
design, therefore, is formally stated as finding the set

},2,1|{ mii �

� =r  that satisfies (7), for some specific functional
J.  To proceed, we must make a specific choice of functional.

3.  Optimization Functional

3.1.  General Considerations

It is by no means obvious which optimization functional to
choose.  It is useful to begin by stating general principles to
guide selection.
3.1.1.  Geophysical Interest.  Let us assume all geophysical
parameters are of interest, and should be included in the func-
tional.  The solution to the m equations in (7) generally (but
not necessarily) depends on the provisional parameters; yet
these parameters will be estimated. This means that we might
need reasonable a priori knowledge, e.g., a hypothesis.
3.1.2.  Independence of Units.  Geophysical parameters gen-
erally have different units, but the solution should not depend
on the choice of units.  (The trace of the covariance does not
satisfy this criterion, and only works for classical first order
design because all coordinates happen to have the same units.)
3.1.3.  Independence of Parameter Basis.  The linearized
geophysical model can be reparameterized by linear combina-
tions of the original parameters, giving identical solutions.
For example, slip rates on two faults might be re-
parameterized in terms of the difference in slip, and sum in
slip.  Network design should be independent of such a change
in parameter basis.
3.1.4.  Analytical Simplicity.  Starting with a functional that
has intuitively appropriate properties, we seek to derive an
equivalent, simpler functional that always leads to the same
solution.   Even so, analytical solution might not be possible
for more complex cases.    One way forward is to seek the so-
lution numerically, starting with an approximate answer.  For

this it would be useful to initialize the search using solutions to
simpler problems.  Therefore, it is useful to choose a func-
tional that is amenable to analytical solution.

3.2.  Specific Choice of Functional

The specific choice of functional proposed is the sum of
logarithmic variances associated with the geophysical eigen-
parameters.  The eigenparameters result from an orthogonal
transformation of the original parameters, where the transfor-
mation matrix is formed from eigenvectors of P.   The eigen-
parameters have a diagonal covariance matrix P’ , whose ele-
ments are eigenvalues kλ  of P.  These eigenvalues are
variances associated with the eigenparameters. They generally
depend on all station positions and provisional parameters

The rationale for using eigenparameters is that they are un-
correlated  (P’  is diagonal), hence their variances summarize
all information on precision.  Defining the functional in terms
of eigenvalues ensures independence of parameter basis
(3.1.3).   The logarithms ensure unit independence (3.1.2).
The sum is taken to include all parameters (3.1.1):
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3.3.  Functional Equivalence

It is now shown that this functional is equivalent to the de-
terminant of the design matrix A of equation (3). Firstly,
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where the symbol ΠΠ denotes multiplication. The symbol ⇔
denotes functional equivalence, in the sense that the values of
parameters that minimize equivalent functionals are identical.
  Now we use the property that the determinant of P'  is un-
changed under an orthogonal transformation + , such as the
one that transformed it from the original covariance matrix P
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At this point, note that if we change the units of any parameter,
it is equivalent to multiplying Pdet  by a constant.  Hence the
functional is independent of parameter units (3.1.2).

The algebra of functional equivalence simplifies (10) even
further:
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That is, the minimum of Pdet  corresponds to the maximum of
1det −P .   Now consider the minimal case where the number of

velocity data m equals the number of parameters n:

( ) AWAAP T detdetdet 1 −⇔−=−= −J (12)

It is assumed here that the data weights are independent of sta-
tion location.  This is a reasonable a priori assumption for re-
gional GPS networks. From equation (12) and (7) we have
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This is the key equation of the paper.  Equation (13) is the
specific form of (7).  Solutions to (13) should be checked to
ensure |det| A  is at its maximum. Unlike covariance analysis,
no matrix inversion is involved, which facilit ates closed-form
analysis (3.1.4).

3.4.  Numerical Solution by Square Root Information
Filtering

Numerical solution using the square root information filter
(SRIF) would allow for spatially correlated geodetic data, and
process noise for stochastic temporal variation in the parame-
ters [Bierman, 1997].  SRIF is routinely used for GPS data re-
duction [Zumberge et al., 1997], and could be implemented for
sophisticated fault modeling.  For SRIF, (12) reduces to
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where kkR  are diagonal elements of the (triangular) square
root information matrix.

Processing time would be dominated by iteration of the fil-
ter to minimize equation (14) numerically.  Note that, to find
the optimal solution, there is no need to compute the solution
(i.e., no need to invert the SRIF matrix).  The sum of loga-
rithms is numerically essential.  To aid convergence, it is use-
ful to seed the algorithm with approximate solutions, which
may be derived by exact solution to simpler, ideal cases.
When seeding is not obvious, a hybrid simplex- Monte-Carlo
algorithm has proved useful [Clarke et al., 1997] for fault pa-
rameter inversion, and should be applicable here.

4.  Example: The Ideal Transform Fault

4.1. Unknown Slip Rate

Consider the elastic dislocation model for an infinite trans-
form fault locked down to depth D with slip rate at depth u0.
Taking the x axis to lie normal to the fault plane, the velocity
of a station i at coordinate xi relative to the far left field of a
left-lateral strike-slip fault is
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where the fault is located at x0.  Provisionally we set 00 =x .
Let us find the position of a station (i=1) that optimizes the

slip rate u0, assuming velocity is expressed relative to some
other station in the far left field.  In this case, (13) becomes
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The solution to (16) that maximizes Adet  is:
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The optimal network therefore has two stations far on opposite
sides of the fault.

4.2. Unknown Depth of Locking

Let us find the position of a station (i=1) that optimizes D,
assuming both slip rate u0 (using stations in the far field either
side of the fault) and the fault location x0.  In this case,
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Solving (18),

Dx ±= (19)

The optimal network therefore has three stations, one at
distance D (~15 km) either side of the fault trace, the other two
at many locking depths on opposite sides of the fault.

4.3. Unknown Depth of Locking and Fault Location

Let us solve for the positions of two stations (i=1,2) that
optimize parameters x0 and D, assuming u0 is resolved:
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Discarding constant terms gives the pair of equations
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Solving these simultaneous equations,
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The optimal network therefore has four stations distributed
symmetrically around the suspected fault trace: two at many
locking depths from the fault, and two at 0.6D (~ 9 km).

4.4.  Two-Fault Systems

Determining how slip at depth might be distributed between
parallel transform faults is a commonly discussed problem
[Dixon et al., 1998].  Let us therefore augment our original
one-fault network with an additional station designed to de-
termine how much slip is partitioned between the original
(“primary”) fault, and a secondary fault suspected of activity.
The velocity anywhere can be formed by superposition of ve-
locities associated with each fault, where ua and xa are the slip
rate and location of the primary fault, and ub and xb are of the
secondary fault:
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(For simplicity, each fault has the same depth of locking D, but
a result can be similarly derived for different values of D).
From the single-fault case, the existing two stations in the far
field are optimally located to determine the sum of slip rates.
It is therefore convenient to re-parameterize the model in terms
of the sum and difference of slip rates:
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To optimize the difference in slip (“slip partitioning”), let us
first write
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and then find the station position that satisfies
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The solution to this is
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That is, the optimal location is precisely midway between the
two faults.   Note that this is independent of the magnitude of
slip partitioning, hence this also optimizes testing of the null
hypothesis (that the secondary fault is inactive).  As an indi-
cator of slip partitioning resolution:
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Firstly, this implies that the resolution of slip partitioning
(i.e., the formal error) is independent of its magnitude.  Im-
portantly, it also implies that resolution becomes fundamen-
tally problematic for fault separations |x−|<2D (~30 km).  At
|x−|=D (~15 km) resolution is only 30% that of well -separated
faults, with resolution dropping approximately linearly with
decreasing fault separation.   The basic principles discovered
here with regard to resolution of slip partitioning can be ex-
trapolated to multiple-fault systems.  That is, stations should
be placed midway between faults.  A series of faults separated
by less than the locking depth would fundamentally be diff i-
cult to resolve no matter how good the network design.

5.  Conclusions

A new analytical method, generalized first order design is
proposed for optimizing geodetic station locations for purposes
of geophysical parameter estimation.  The method, given by
equation (13), finds the set of station locations that maximizes
the determinant of the design matrix.  This choice of optimiza-
tion functional has appropriate qualiti es, including independ-
ence of units, and independence of parameter basis.  

Analytical solutions to simple, idealized models might be
used to seed numerical solution of more complex cases. Equa-
tion (14) specifically gives the optimization functional for
SRIF, which can be implemented to incorporate multi -
parameter stochastic modeling.  Moreover, closed-form analy-
sis might help develop insight towards eff icient search algo-
rithms.  The method leads to exact analytical solutions for the
case of the ideal, infinite transform fault.  For example, to re-

solve simultaneously the depth of locking D and the location
of the fault, optimal station locations are at 3D±  from the a
priori fault plane.  Analysis of slip partitioning in a two-fault
system shows that the resolution is optimized by including a
station midway between faults; however resolution is funda-
mentally limited for faults separated by <2D (~30 km).  Reso-
lution is not found to depend on the magnitude of slip parti-
tioning.

Investigators might intuitively design networks to see if
details of the observed velocity field match expectations.  This
is a form of model validation, with different criteria (and there-
fore different resulting designs) than precision optimization.
However, it can be treated as an optimization problem if for-
malized in terms of hypothesis testing.  This would require
prior selection of appropriate test parameters for a design strat-
egy that optimizes model discrimination.

This paper has described a design methodology in an area
that has practical and timely relevance, and helps to move ge-
odesy’s current emphasis on velocity precision towards geo-
physical model resolution.  Further research should develop
numerical application to more complicated systems.  The
method is quite general, and should find application to other
areas, such as autonomous scheduling of spacecraft observa-
tions to optimize model resolution and hypothesis testing.
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