GEOPHY SICAL RESEARCH LETTERS, VOL. 27, NO. 22, PAGES 26153618 NOVEMBER 15, 2000

Geodetic networ k optimization for geophysical parameters

Geoffrey Blewitt
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Abstract. The first order design problem in geodesy is gener-
alized here, to seek the network configuration that optimizes
the predsion d geophysicd parameters. An optimal network
design that satisfies intuitively appropriate aiteria corresponds
to minimizing the sum of logarithmic variances of
eigenparameters. This is equivalent to maximizing the deter-
minant of the design matrix, allowing for closed-form analysis.
An equivalent expresson is aso given spedficdly for square
roat information filtering, to fadlit ate numericd solution. Ap-
propriate seeding d numericd solutions can be provided by
exad analyticd solutions to idedized models. For example,
for an ided transform fault, simultaneous resolution d both
the locking depth D and locdion d the fault is optimized by
pladng stations a + D/+/3 (~9 km) from the apriori fault
plane. In atwo-fault system, the resolution o dlip partitioning
is optimized by including a station midway between faullts;
however resolution is fundamentally limited for fault separa-
tion<2D (~30 km).

1. Introduction

“First order design” in geodesy is the problem of finding
the schedule of observations that optimizes the predsion o
estimated network geometry [Vanicek and Krakiwsky, 1983.
To today’s investigator using the Global Positioning System
(GP9, optimizing coordinate predsion through improved
network designis no longer a serious consideration [Zumberge
et al., 1997. In contrast, this paper addresses network design
that optimizes geoplysicd parameter predsion. This is a
timely topic, given new initiatives such as the Plate Boundhry
Observatory, and the general rapid growth of GPS networks
for geophysicd reseach [Segall and Davis, 1997.

For a given network, the Network Inversion Filter by Segall
and Matthews [1997 is date-of-the-art, addressng
geophysicd parameter resolution and acourting for correlated
errors. Thismight be incorporated into a heuristic gpproach to
network design, but as of yet, there is no systematic methodto
design retworks for geophysicd investigations. A comple-
mentary and pdentially insightful approach is to formalize the
design poblem, enabling closed-form anaysis. This paper
derives results for examples of ided models, which can then
be used to seed algorithmic searches for solutions to more so-
phisticaed geophysicd models and filtering techniques. An
optimization functional spedfic to sguare roat information fil-
tering (SRIF) is presented here, which would fadlitate dfi-
cient stochastic modeling.
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2. Formalizing the Problem

2.1. Geodetic Model

Given n stations at positions r; for i=1,2,3...m, let geodesy
provide estimates of m station velocities u; with the m x m co
variance matrix C. The relevant velocity vedors u; may have
1, 2, or 3 comporents. For least-squares estimation o the
geophysicd parameters, u; will be used as inpu data, and the
inverse of C will bethefully popuated dataweight matrix, W.
Althoughthe data type is gation v ocity, the following could
be aapted to time series of displacanents, thus
acommodating models with explicit time dependence.

2.2. Geophysical functional model

Asaume that ead station velocity vedor u; can be written as
an analyticd function d station paition r; and geophysicd
parameters gi for k=1,2,3...n:

Uy =G(r;; 01, 92,--0n)

Uy =G(r2; 01,92, - On) 1)

Un =G ('m; 91,92, On)

The explicit dependence on ory the locd station's paosition
asaumes that the zeo order design (i.e., the velocity datum) is
in acordance with the geophysicd model. Spedficaion d an
appropriate velocity datum is usually achievable using dobal
geodetic networks. While thisis not essentia to the physics, it
does al ow for the simple form of equation (1).

2.3. Geophysical Parameter Precision

The following shows formally how parameter predsion de-
pends on retwork design. In preparation for weighted least
squares analysis, equation (1) is lineaized abou provisional
parameter values (dencted by tildes):

Ui =G(1;G1. G2+ Gn) + A Lo - 3) &)
where the design matrix A (m x n) contains partial derivatives
of the velocity model with resped to the geophysicd parame-
ters, evaluated at the provisional values

Ay = (3G(ri;§l$,gz,'"gn)|~~ o ©)
9k 3.0 -Gn

The variances and covariances of the estimated parameters are
given by the matrix

P(rl,rz,"',rm;§11§2!"'!§n): (ATWA)l (4)

This emphasizes P as a function d al station pgaitions and
provisional parameters.
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2.4. Generalized First Order Design

Matrix P characterizes the precision of the parameters. Let
us characterize overall precision by a single number, which
can be minimized by varying the station locations. Consider
first an optimization functional J, which is some (as yet unde-
fined) function of the covariance matrix:

J{P(rlerv"'vrm; §1,§2,"',§n)} (5

For each trial network defined by the set {r; |i =12...,m}, ex-
pression (5) would yield a single number for assessment.

Now let us vary this functional by perturbing every station
position by asmall amount ér; :

SH{P(ry, 20 T G2+ G )} = g—fﬁn +—dr,
1

- +6_‘]6rm
Orm

The set of station positions r; that minimizes this functiona is
such that variation is zero for any arbitrary set of station per-
turbations. For every station i, the solution must satisfy

Ki(FlyFZy"'yFm;611621"'a§n):§_;]:0 (7)
|

This is a system of m equations, each with a different vector
function K; of each station, for which we seek m unknown po-
sitions fy,M,-+-,fm. The problem of generalized first order
design, therefore, is formally stated as finding the set
{ri1=12...,m that satisfies (7), for some specific functional
J. To proceed, we must make a specific choice of functional.

3. Optimization Functional

3.1. General Considerations

It is by no means obvious which optimization functional to
choose. It is useful to begin by stating general principles to
guide selection.

3.1.1. Geophysical Interest. Let us assume all geophysical
parameters are of interest, and should be included in the func-
tional. The solution to the m equations in (7) generaly (but
not necessarily) depends on the provisional parameters; yet
these parameters will be estimated. This means that we might
need reasonable a priori knowledge, e.g., a hypothesis.

3.1.2. Independence of Units. Geophysical parameters gen-
erally have different units, but the solution should not depend
on the choice of units. (The trace of the covariance does not
satisfy this criterion, and only works for classical first order
design because al coordinates happen to have the same units.)
3.1.3. Independence of Parameter Basis. The linearized
geophysical model can be reparameterized by linear combina-
tions of the original parameters, giving identical solutions.
For example, dlip rates on two faults might be re-
parameterized in terms of the difference in dlip, and sum in
dlip. Network design should be independent of such a change
in parameter basis.

3.1.4. Analytical Simplicity. Starting with a functional that
has intuitively appropriate properties, we seek to derive an
equivalent, simpler functional that always leads to the same
solution. Even so, analytical solution might not be possible
for more complex cases. One way forward is to seek the so-
lution numerically, starting with an approximate answer. For
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thisit would be useful to initialize the search using solutions to
simpler problems. Therefore, it is useful to choose a func-
tional that is amenable to analytical solution.

3.2. Spedfic Choiceof Functional

The specific choice of functional proposed is the sum of
logarithmic variances associated with the geophysical eigen-
parameters. The eigenparameters result from an orthogonal
transformation of the original parameters, where the transfor-
mation matrix is formed from eigenvectors of P. The eigen-
parameters have a diagonal covariance matrix P’, whose ele-
ments are eigenvalues A, of P. These eigenvalues are
variances associated with the eigenparameters. They generally
depend on all station positions and provisional parameters

The rationale for using eilgenparameters is that they are un-
correlated (P’ is diagonal), hence their variances summarize
al information on precision. Defining the functional in terms
of eigenvalues ensures independence of parameter basis
(3.1.3). The logarithms ensure unit independence (3.1.2).
The sumistaken to include all parameters (3.1.1):

J :Zln)\k 8)

3.3. Functional Equivalence

It is now shown that this functiona is equivaent to the de-
terminant of the design matrix A of equation (3). Firstly,

J=S InA =InF A He [T A =detP’ )
> k=i |- [

where the symbol I denotes multiplication. The symbol -
denotes functional equivaence, in the sense that the values of
parameters that minimize equivaent functionals are identical.
Now we use the property that the determinant of P' is un-
changed under an orthogonal transformation T, such as the
one that transformed it from the original covariance matrix P

J =detP'=det(rr" )detP'= det(rp'r™)
= detP

(10)

At this point, note that if we change the units of any parameter,
it is equivalent to multiplying detP by a constant. Hence the
functional isindependent of parameter units (3.1.2).

The algebra of functional equivalence simplifies (10) even
further:

n n
J=detP - ka :—Zln/\k‘1 - —detP™  (11)
=1 =1

That is, the minimum of detP corresponds to the maximum of
detP™. Now consider the minimal case where the number of
velocity data m equal's the number of parameters n:

J=-detP =—det(ATWA) « —[detA| (12)

It is assumed here that the data weights are independent of sta-
tion location. This is a reasonable a priori assumption for re-
gional GPS networks. From equation (12) and (7) we have

9 GetA=0 (13)
al’i
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This is the key equation d the paper. Equation (13) is the
spedfic form of (7). Solutions to (13) shoud be deded to
ensure |detA | isat its maximum. Unlike cvariance analysis,
no matrix inversion is involved, which fadlit ates closed-form
analysis (3.1.4).

3.4. Numerical Solution by Square Root Information
Filtering

Numericd solution wsing the square roat information filter
(SRIF) would allow for spatialy correlated geodetic data, and
process noise for stochastic temporal variation in the parame-
ters [Bierman, 1997. SRIF isroutinely used for GPSdata re-
duction[Zumberge et al., 1997, and could be implemented for
sophisticated fault modeling. For SRIF, (12) reducesto

_|<£|Rkk _ilank
=1 =1

where Ry are diagoral elements of the (trianguar) square
root information matrix.

Procesdng time would be dominated by iteration of the fil-
ter to minimize uation (14) numericdly. Note that, to find
the optimal solution, there is no need to compute the solution
(i.e., no ned to invert the SRIF matrix). The sum of loga-
rithms is numericdly esential. To aid convergence, it is use-
ful to sea the dgorithm with approximate solutions, which
may be derived by exad solution to simpler, ided cases.
When sedling is not obvious, a hybrid simplex- Monte-Carlo
agorithm has proved useful [Clarke et al., 1997 for fault pa-
rameter inversion, and shoud be gplicable here.

(14)

4. Example: Theldeal Transform Fault

4.1. Unknown Slip Rate

Consider the dastic dislocaion model for an infinite trans-
form fault locked dawvn to depth D with dlip rate at depth uo.
Taking the x axis to lie normal to the fault plane, the velocity
of astationi at coordinate x; relative to the far left field of a
left-lateral strike-dip fault is
X —X , W

—arctan——> +— (15
m D

=G(%;Uo, %o, D)— >

where the fault islocaed at xo. Provisionally weset x, =0.
Let us find the position d a station (i=1) that optimizes the

dip rate up, asaiming velocity is expressed relative to some

other stationin the far left field. In this case, (13) becomes

_ 0 9G(x;D) _ 1
Tox A nD[(x/ D)2 +1]

(16)

The solutionto (16) that maximizes |detA| is:

(x/D) - +oo (17

The optimal network therefore has two stations far on oppaite
sides of the fault.

4.2. Unknown Depth of Locking

Let us find the position o a station (i=1) that optimizes D,
asauming both dip rate up (using stations in the far field either
side of the fault) and the fault location xo. In this case,

3617

_ 0 0G(xD) _ Ug

“ox oD n(X+D)2

(x-D)x+D) (18

Solving (18),
x=xD (29
The optimal network therefore has three stations, one at

distance D (~15 km) either side of the fault trace the other two
at many locking depths on oppaite sides of the fault.

4.3. Unknown Depth of Locking and Fault L ocation
Let us lve for the positions of two stations (i=1,2) that
optimize parameters xo and D, assuming Uo is resolved:
_ 9 EBG %) 0G(X,)  0G(X,) aG(xl)E
ax 0 0% dD 0x, oD [ (20

_ 0 U D(x2 —xl) E

%, 2(xl2 + DZXXZZ + D2)

Discarding constant terms gives the pair of equations

O_iExz X E: X2 = 2% %, — D?
0% Xl + D2 X12 + DZ)2
(21
O—iE ! % - X2 + 2% + D?
Ox, (¢ + D* (x§ + D2)2
Solving these simultaneous equations,
X =t— and Xo = 13 (22)
7 7

The optima network therefore has four stations distributed
symmetricdly around the suspeded fault trace two at many
locking depths from the fault, and two at 0.6D (~ 9 km).

4.4. Two-Fault Systems

Determining how dlip at depth might be distributed between
paralel transform faults is a commonly discussed problem
[Dixon et al., 1999. Let us therefore augment our original
one-fault network with an additional station designed to de-
termine how much dlip is partitioned between the origina
(“primary”) fault, and a secondary fault suspeded o adivity.
The velocity anywhere can be formed by superpaosition o ve-
locities asociated with ead fault, where u, and x, are the dlip
rate and locaion d the primary fault, and u, and x, are of the
seaondary fault:

u X=X U X=X , Uy +U
u(x)= 2 arctars—2 + % grotaps b 4 Ya Tt
m D m D

(23)
(For smplicity, ead fault has the same depth of locking D, but
a result can be similarly derived for different values of D).
From the single-fault case, the existing two stations in the far
field are optimally locaed to determine the sum of dip rates.
It is therefore convenient to re-parameterize the model in terms
of the sum and difference of dlip rates:

G(xu.)= U*ZJ;_[U’ arctant—2

(24)
u, —u- X—Xp . Uy
+ arctan +—
2 D
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To opimize the difference in dip (“dip partitioning’), let us
first write

detA = M -1 Earctar‘.x — % _arctars 2 E (29)
ou_ 20 D D C

and then find the station pasition that satisfies

0 1 1
0=—detA = - 26
o " o) oF+1 [x-x)ofer
The solutionto thisis
x=XatX o X @27)

2 2

That is, the optimal locaion is predsely midway between the
two faults. Note that this is independent of the magnitude of
dip partitioning, hence this also optimizes testing of the null
hypothesis (that the secondary fault is inadive). As an indi-
cdor of dlip pertitioning resolution:

detA| = larctarjxa;xb| = larctarli| (28)
m 2D s 2D

Firstly, this implies that the resolution d slip partitioning
(i.e., the formal error) is independent of its magnitude. Im-
portantly, it also implies that resolution becomes fundamen-
tally problematic for fault separations [x-|<2D (~30 km). At
[X-=D (~15 km) resolution is only 30% that of well-separated
faults, with resolution doppng approximately linealy with
deaeasing fault separation. The basic principles discovered
here with regard to resolution d dip partitioning can be e-
trapolated to multiple-fault systems. That is, stations soud
be placal midway between faults. A series of faults ssparated
by lessthan the locking depth would fundamentally be diffi-
cult to resolve no matter how goodthe network design.

5. Conclusions

A new analyticd method, generalized first order design is
propaosed for optimizing geodetic station locations for purpases
of geophysicd parameter estimation. The method, given by
equation (13), finds the set of station locaions that maximizes
the determinant of the design matrix. This choice of optimiza-
tion functional has appropriate qualiti es, including independ-
enceof units, and independence of parameter basis.

Analyticd solutions to simple, idedized models might be
used to sead numericd solution d more cmplex cases. Equa-
tion (14) spedficdly gives the optimizaion functional for
SRIF, which can be implemented to incorporate multi-
parameter stochastic modeling. Moreover, closed-form analy-
sis might help develop insight towards efficient search algo-
rithms. The method leads to exad anayticd solutions for the
cese of the ided, infinite transform fault. For example, to re-
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solve simultaneously the depth of locking D and the locdion
of the fault, optimal stationlocaionsare & + D/+/3 fromthe a
priori fault plane. Analysis of dip partitioning in a two-fault
system shows that the resolution is optimized by including a
station midway between faults, however resolution is funda
mentally limited for faults sparated by <2D (~30 km). Reso-
lution is not foundto depend onthe magnitude of dip perti-
tioning.

Investigators might intuitively design retworks to see if
detail s of the observed velocity field match expedations. This
isaform of model validation, with dfferent criteria (and there-
fore different resulting designs) than predsion optimization.
However, it can be treaed as an ogimizaion poblem if for-
malized in terms of hypothesis testing. This would require
prior seledion d appropriate test parameters for a design strat-
egy that optimizes model discrimination.

This paper has described a design methoddogy in an area
that has pradicd and timely relevance, and helps to move ge-
odesy’s current emphasis on \elocity predsion towards geo-
physicd model resolution. Further reseach shoud develop
numericd applicaion to more mmplicaed systems. The
method is quite general, and shoud find applicaion to cther
aress, such as autonamous scheduling d spacecaft observa
tionsto optimize model resolution and hypathesis testing.
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