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1. INTRODUCTION

The sensitivity of a cross-track interferometer is governed in part by the the size of the antennas and the separation between them.

That is, increasing the along-track dimension of the antenna can be used to produce a narrow beam in the azimuth, which in

turn improves the signal to noise ratio. For a fixed phase measurement accuracy, the interferometric baseline can be increased to

improve the sensitivity to topographic features. Often, physical size limitations exist which constrain the degree to which these

dimensions can be increased, and therefore a compromise is made for the overall performance of the interferometric system.

This is a limitation that can be especially true for spaceborne systems, where the consequence of having a non-trivial baseline

in low earth orbit leads to having two satellite platforms, instead of one; or alternatively relying on repeat-pass observations for

achieving similar goals, but at the consequence of noise being introduced by target decorrelation over time.

In this paper we introduce one solution to the set of limitations described above, which is to use a high frequency (Ka-

band 35 GHz) carrier, which has the effect of reducing the scale of the overall interferometer when compared to conventional

lower frequency (1-10 GHz) systems. Difficulties that arise in using a higher frequency system are the increased sensitivity

to geometric variations in the millimeterwave components, and issues related to obtaining a satisfactory signal to noise ratio.

In order to overcome these problems, the Microwave Remote Sensing Laboratory (MIRSL) at University of Massachusetts in

Amherst has constructed a fixed location Ka-band interferometer for the purposes of prototyping components for a spaceborne

system, and for use as an interferometer in its own right. The interferometer uses a 1W solid state amplifier and a 100 MHz

FMCW chirp for obtaining good range resolution and sufficient signal to noise ratio to create interferograms that are limited by

grazing angle and shadowing effects more than thermal noise, out to a range of 6 km from a 250m height above terrain (an 85

degree look angle). In what follows, we present initial results from the interferometer and discuss the processing strategy used

for creating and interpreting the interferometric observations.

2. SYSTEM DESCRIPTION

The interferometric system consists of four fundamental sections. These are: i.) signal generation and timing, ii.) RF upcon-

version (to 35 GHz) iii.) RF downconversion, and iv.) digital sampling. Further processing (digital) occurs downstream in

order for creating interferometric phase measurements and projecting the results onto a geographic coordinate system. Signal

generation and timing takes place through the interaction of a National Instruments PXI system (including a MS Windows

based controller) and an arbitrary waveform generator, for creating the swept frequency waveforms. The generated signals are

created in the complex-domain using in-phase and quadrature components, in order for driving the upconversion stage while

also suppressing the signal’s image. A copy of the transmitted signal is used by the downconverter to stage to perform chirp



compression and to reduce the data rate. Prior to transmission, the signal is amplified by a 1W solid state amplifier and fed to a

slotted waveguide antenna, identical to the two receive antennas. Signals returned by reflections from the target are fed into the

downconverter system, which reduces the frequency of the signal down to a 5 to 105 MHz range, suitable for sampling by a Na-

tional Instruments digital oscilloscope card, co-mounted in the PXI chassis with the signal generation and timing system. This

data is then stored onto a RAID system, capable of storing many hours of observations, which may then be later post-processed

into meaningful data products. An image of the system, as it is deployed on a building top on the University of Massachusetts

campus is shown in Figure 1a.

3. RESULTS

Testing of the 35 GHz interferometer has taken place in multiple stages. Initially in the laboratory, where gain, phase balance,

and analog to digital conversion are tested within a controlled environment. The interferometer was then taken outdoors and

used to image the side of buildings local to the UMass campus, taking the conventional geometry of an interferometer looking

downward, and turning it on its side. First tests of the interferometer outdoors demonstrated that fringes and backscatter

power were being collected by the system and could be correlated to features of the terrain and buildings. The next stage was

to move the system to the top of one of the tallest buildings on campus (known as the Laederle Graduate Research Tower,

LGRT) and images made from there. Although 70m is considered a good height for making backscatter measurements, for the

interferometric system, more altitude was required to overcome the effects of geometric decorrelation as well as to increase the

observable ground range at incidence angles less than grazing. Hence, the system was moved to a local state park (Skinner),

that is located along the Holyoke Mountain range, some 270m above the local terrain. An image of the interferometric phase

projected onto the local terrain is shown in Figure 1b. The slow change in phase as a function of range is indicative of the phase

progression associated with a flat earth. Further analysis has been used for converting this phase into the height of the terrain

above the local topography.

4. CONCLUSION

The Microwave Sensing Laboratory at the University of Massachusetts has developed a portable 35 GHz interferometric radar

that can be deployed in a variety of observing geometries. The interferometer is shown to produce meaningful fringes that

can be related to geographic features in the terrain. In this paper we will describe the system in more detail and demonstrate

observed and processed results.



(a) Photograph of the 35 GHz interferometric system (b) Interferometric phase projected over terrain

Fig. 1. System image and observations


