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1. INTRODUCTION

For a variety of remote sensing detection problems, the covariance matrix is a key statistical quantity for characterizing the

“normal” variability of the data. Particularly for high-dimensional data (e.g., hyperspectral imagery), it provides a concise

characterization of the data distribution that includes all pairwise correlations. For this reason, it remains a cornerstone in the

statisitical analysis of remote sensing data. In particular, it is key to standard approaches for detecting signals [1], anomalies [2],

and changes [3, 4, 5, 6, 7].

To apply these algorithms requires as a first step that the covariance matrix be estimated from the data. Particularly when

there are limitations on the number of samples available for making that estimate, the sample covariance is often a sub-optimal

choice.1 For this reason, various kinds of regularization have been introduced [8, 9, 10, 11, 12, 13], including, very recently,

regularization based on the sparse matrix transform (SMT) [14, 15].

In this paper, we will describe the SMT, and investigate its utility in improving the performance of algorithms for detecting

signals, anomalies, and changes.

2. HYPERSPECTRAL DETECTION ALGORITHMS

2.1. Signals

If t corresponds to a target signal that we seek to detect over the background clutter x with mean 〈x 〉 = 0 and covariance

R =
〈
xxT

〉
, then the matched filter is given by q = R−1t. Applied to an observation s = αt + x, where α is a measure

of target strength, and x is the background, the scalar quantity qT s provides an indicator of whether the signal is present (i.e.,

whether α �= 0). When R is not known precisely, then q̂ = R̂−1t is an approximate matched filter, and the performance of q̂

depends on the quality of the estimator R̂ [1, 15].

1Actually, the sample covariance is the optimal estimator, in the sense of maximum likelihood, but most detection algorithms actually require an inverse

covariance matrix. Unfortunately, the optimal estimate of the inverse covariance matrix is not the same as the inverse of the (maximum likelihood) optimal

estimate of the covaricance matrix.



2.2. Anomalies

For anomaly detection, there is not a known target, and the aim is to decide whether the observed signal s is consistent with the

background distribution, or if it is an ourlier. The RX detector [2] uses squared Mahalanobis distance from the data centroid as

the discriminating statistic: sT R−1s. A good RX anomaly detector will enclose a fraction f < 1 (with 1 − f � 1) of the data

in as small a volume as possible. For Gaussian data, the nearer the estimate of R̂−1 to R−1, the better the anomaly detector.

2.3. Changes

Given two images of the same scene, taken at different times and under different conditions, the aim of anomalous change

detection is to determine whether any unusual changes have occurred in the scene. A variety of quadratic covariance-based

algorithms have been developed for this purpose (see review in Ref. [7]), and their performance depends on the accuracy with

with the covariance is estimated. For instance, if Raa and Rbb are the covariance matrices for the two images, and Rab is the

cross-covariance, then the hyperbolic anomalous change detector [6] is given by

A(sa, sb) =
[
sT
a sT

b

]
⎛
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where sa and sb are the observed signals in the two images.

3. MAXIMUM LIKELIHOOD ESTIMATION

Given a p-dimensional Gaussian distribution with zero mean and covariance matrix R ∈ R
p×p, the likelihood of observing m

samples, organized into a data matrix X = [x1x2 . . .xm] ∈ R
p×m, is given by

L(R; X) =
|R|−m/2

(2π)mp/2
exp

[
−1

2
trace

(
XT R−1X

)]
. (2)

If the covariance is decomposed as the product R = EΛET where E is the orthogonal eigenvector matrix and Λ is the diagonal

matrix of eigenvalues, then one can jointly maximize the likelihood with respect to E and Λ, which results in the maximum

likelihood (ML) estimates [14]

Ê = arg minE∈Ω

{∣∣diag(ET SE)
∣∣} (3)

Λ̂ = diag
(
ÊT SÊ

)
, (4)

where S =
〈
xxT

〉
= 1

mXXT is the sample covariance, and Ω is the set of allowed orthogonal transforms. Then R̂ = ÊΛ̂ÊT

is the ML estimate of the covariance.

Note that if S has full rank and Ω is the set of all orthogonal matrices, then the ML estimate of the covariance is given by

the sample covariance: R̂ = S.

3.1. Sparse Matrix Transform (SMT)

The Sparse Matrix Transform (SMT) provides a way to regularize the estimate of the covariance matrix by restricting the set Ω

to a class of sparse eigenvector matrices E.



The most sparse nontrivial orthogonal transform is the Givens rotation, which corresponds to a rotation by an angle θ in the

plane of the i and j axes; specifically, it is given by E = I + Θ(i, j, θ) where

Θ(i, j, θ)rs =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos(θ) − 1 if r = s = i or r = s = j

sin(θ) if r = i and s = j

− sin(θ) if r = j and s = i

0 otherwise.

(5)

Let Ek denote a Givens rotation, and note that a product of orthogonal rotations EkEk−1 · · ·E1 is still orthogonal. Let ΩK

be the set of orthogonal matrices that can be expressed as a product of K Givens rotations. The SMT covariance estimate is

then given by Eq. (3) with Ω = ΩK and Eq. (4). (Actually, the effective Ω is more restrictive than this, since we do not optimize

over all possible products of K rotations, but instead greedily choose Givens rotations one at a time.)
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