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1. Introduction

This paper proposes an Empirical Mode Decomposition (EMD) based decision fusion approach to improve 

hyperspectral image classification accuracy. EMD is a recently proposed adaptive signal decomposition method 

that iteratively decomposes the data into so called Intrinsic Mode Functions (IMFs), which comprise a finite set 

of adaptive basis functions [1]. EMD initially extracts the highest local frequencies from a signal (i.e., the first 

IMF includes the highest local frequencies) and repeats the process using the residue signal to obtain the next 

highest frequencies at each stage (i.e., second IMF includes the next highest local frequencies). It has been shown 

in [2] that EMD can be used to improve hyperspectral image classification accuracy. This paper presents a novel 

decision fusion approach using EMD for hyperspectral image classification and provided experimental results 

demonstrate that the classification accuracy can even further be increased using the proposed approach. 

2. 2D Empirical Mode Decomposition of Hyperspectral Bands

In this paper, two dimensional EMD (2D-EMD) is applied to each hyperspectral image band, individually. 2D-

EMD [3] uses an iterative process called sifting to decompose data into IMFs. The algorithm of 2D-EMD, which 

decomposes the l-th hyperspectral image band lB to its IMFs, is presented in detail as follows. In the algorithm,

lB denotes the l-th original hyperspectral image band, ,l mIMF shows the values of the m-th IMF (or m-th order 

IMF) ( 1,2,...,m M ) of the l-th hyperspectral image band and ( )
,
n

l mI shows the present values used in the n-th 

iteration to find the m-th IMF of the l-th band.

Algorithm:  2D-EMD of Hyperspectral Image Bands
Step1: Initialize the present values used in the first iteration to find the 1-th IMF as (1)

,1l lI B .
Step2: Find all points of both 2D local maxima and local minima of ( )

,
n

l mI .
Step3: Create the upper envelope maxE and lower envelope minE by 2D spline interpolation of local maxima and 
local minima, respectively. 
Step4: Calculate the mean of the upper and lower envelopes with the following equation: ( )

max min( ) / 2n
mA E E

Step5: Subtract the envelope mean from the input signal: ( ) ( ) ( )
,

n n n
m l m mS I A



Step6: Check if the envelope mean signal is close to the zero:

( )

1 1
( , )

P R
n

m
i j

A i j

P R
where P and R are the dimensions of ( )n

mA and is a small threshold. If the envelope mean signal is close to zero, 
the stop criterion is fulfilled (assume at step n N ) and the current IMF is obtained as ( )

,
N

l m mIMF S . Otherwise, 

the next iteration is started from Step2 with ( 1) ( )
,
n n

l m mI S .

Step7: Compute the residue signal mR as ( )
, ,
n

m l m l mR I IMF .
If the residue does not contain any more extreme points the EMD process is stopped. Otherwise, the next IMF is 
obtained starting from Step2 using the current residue as the next input, i.e. (1)

, 1l m mI R .

The original hyperspectral image band lB is actually equal to the sum of all corresponding IMFs and the final 

residue (i.e., ,
1

M

l l m M
m

B IMF R ). The properties of IMFs can be summarized as: i) the lowest order IMF (i.e., 

the first IMF) includes the highest local spatial frequency detail, ii) both lower order and higher order IMFs can 

have low and high spatial frequency detail at different spatial locations depending on data. and iii) lower order 

IMFs capture fast spatial oscillation modes while higher order IMFs typically represent slow spatial oscillation 

modes [1] (therefore, if 2D-EMD is interpreted as a spatial-scale analysis method, lower-order IMFs and higher-

order IMFs are related to the fine and coarse scales, respectively). 

3. Decision Fusion using EMD

The aim of this paper is to fuse the decisions of different data representations: i) the first IMF ( 1IMF ), ii) the 

second IMF ( 2IMF ), iii) the sum of the first and second IMFs ( 1 2IMF IMF ) and iv) the original data (without 

EMD) in order to increase the overall SVM classification accuracy obtained using only the original data. Firstly,

2D-EMD is applied to each hyperspectral image band to obtain IMFs and the abovementioned data 

representations are evaluated. Then the utilized data representation is used in classification with SVM [4]

adopting the one against all (OAA) strategy for multiclass problems. The OAA strategy splits the problem into n

SVMs for n class problems and each SVM solves a two-class problem defined by one class against all the others

[3]. In OAA, each test sample is assigned to the class which gets the highest distance to the hyperplane. In this 

paper, the maximum distance values for each data representation are evaluated for each test sample, and decision 

fusion is achieved by assigning the sample to the class which provides the largest distance value. As an example, 

in order to fuse the classification results of 1IMF and 2IMF , the maximum distance 1( )IMFf x obtained using

1IMF and  the maximum distance 2( )IMFf x obtained using 2IMF are evaluated and the final decision is given by 

assigning the sample x to the class which provides the highest distance (i.e., 1 2max ( ( ) , ( ) )IMF IMFf fx x ). Results 



show that proposed approach provides superior classification performance compared to standard SVM and  the 

best result is obtained in case of fusing the classification results of 2IMF and 1 2IMF IMF .

4. Experimental Results

The Indian Pine hyperspectral image [5], which consists of 145 145 pixels with 220 bands, is used in the 

experimental results presented in this paper. The number of bands is initially reduced to 200 by removing bands 

covering water absorption and noise. The classes and the related number of samples used in the experiments are 

shown in Table I. In this case 10% of the total data samples are used as training data and the rest is used for 

testing data. In the experiments, an SVM classifier with RBF kernel was used. Table II reports the overall 

accuracies of SVM obtained using different data representations: i) original data set, ii) 1IMF , iii) 2IMF , and iv)

1 2IMF IMF . Fig. 1 shows the 1IMF , 2IMF and 1 2IMF IMF images for a sample band of the Indian Pine data

together with the original band. In Table II, one can observe that 2IMF and 1 2IMF IMF provide the best two 

classification performances individually. The focus of this paper is to improve these already good accuracies with 

the proposed decision fusion approach. Table III reports the fused classification results of the abovementioned 

data representations. In this table, the data representations whose classification results are included in the fusing 

step are explicitly shown. From the table, one can observe that standard SVM classification performance is

significantly improved by the proposed fusing approach and the best result is obtained by fusing the 

classification results of 2IMF and 1 2IMF IMF .
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(a) (b) (c) (d)
Fig 1. Indian Pine Image Band #28: (a) original band (b) first IMF 

(c) second IMF (d) sum of first and second IMFs

TABLE I
NUMBER OF SAMPLES (NOS) FOR EACH CLASS OF THE INDIAN PINE DATA

Class NoS

Corn-no till 1434
Corn-min till 834
Grass/Pasture 497
Grass/Trees 747

Hay-windrowed 489
Soybean-no till 968

Soybean-min till 2468
Soybean-clean till 614

Woods 1294
Total 9345

TABLE II
SVM OVERALL ACCURACY (OA) VALUES OBTAINED USING DIFFERENT DATA REPRESENTATIONS

Feature 
Representations  OA

Original Data 82.80

1IMF 77.68

2IMF 95.75

1 2IMF IMF 94.27

TABLE III
OVERALL ACCURACY (OA) VALUES OBTAINED USING DECISION FUSION OF DIFFERENT DATA REPRESENTATIONS

Fused Data Representations 
OAOriginal 

Data 1IMF 2IMF 1 2IMF IMF

87.17
94.56
93.63
93.77
92.63
96.22
94.92
94.37


