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1. INTRODUCTION 

Monitoring beaches and studying the processes that govern their change are critical to the future sustainability of 

these valued environments and the economies that depend on them. Airborne light detection and ranging (lidar) 

systems have revolutionized beach monitoring enabling high resolution sampling of nearshore topography over 

long segments of coastline quickly, accurately, and economically. Small-footprint, discrete-return systems enable 

beach and upland mapping with average spatial resolutions greater than 1 point per m2, vertical accuracy (z) of 5–

10 cm, and horizontal accuracy (x,y) of 15-20 cm [1]. From the data, high resolution digital elevation models 

(DEMs) can be generated. By differencing DEMs or contours generated from repeat pass surveys, the change in 

volume or shoreline position for a beach can be measured respectively [2] [3]. Additionally, features can be 

extracted to measure changes in nearshore geomorphology [4] [5].  

Data mining and pattern classification techniques offer great potential to move the analysis of lidar data 

beyond visual interpretation and simple (first order) measurements made from DEMs but to date have been 

relatively unexplored.  This is particularly true for beach monitoring with lidar data because of the importance of 

subtle variation in topography and non-stationary processes along the beach, such as localized "hot spots" of 

anomalous erosion or accretion. When acquired with sufficient temporal coverage, the high spatial-resolution 

information in the lidar data can resolve non-stationary processes and reveal patterns in beach change otherwise 

unforeseen.  Here, we present a systematic framework to mine morphologic features from time series lidar data 

acquired over a beach and characterize the joint effect of the features on the outcome of erosion. Our approach is 

stochastic in nature, and we use logistic regression to model the variation in morphology on probability of 

shoreline erosion along the beach (alongshore). Important features are methodically detected and the resultant 

models can be used for classification of high impact zones. 

2. DATA PROCESSING 

Airborne lidar surveys were acquired by University of Florida (UF) over the St. Augustine Beach region of 

Florida USA seven times between August 2003 and February 2007.  This resulted in six sequential coverage 



epochs ranging in temporal spans of less than two months to over a year and a half.  A 10 km stretch of beach was 

selected for investigation because it contains a historical accretion zone in the southern portion and a highly 

erosive pier zone to the north that requires periodic beach nourishment to maintain the usable beach area. The 

survey parameters coupled with the specific lidar system’s scan properties resulted in a mean ground point density 

of 1.3 points/m2. The raw point data underwent a series of pre-processing steps and were then interpolated to 

1 m bare-earth elevation grids for each acquisition. The shoreline was delineated using the Mean Higher High 

Water (MHHW) tidal datum [3].  

3. FEATURE EXTRACTION

The natural coordinate system traditionally used for studying shoreline change consists of a local 2D Cartesian 

system oriented with alongshore and cross-shore axes.  The lidar-derived DEMs were sampled by an algorithm 

that auto-extracts elevation values along cross-shore profile lines oriented roughly orthogonal to the shoreline 

contour [5]. This provides the x,y-coordinates and elevation values along each profile at a user-defined spacing.  

The profiles were extracted every 5 m in the alongshore direction and they extend in the cross-shore from the 

dune toe line (shoreward edge of dune) to the MHHW shoreline contour.  The temporal change in shoreline 

between the data acquisition periods was quantified using pairs of profiles, and the profiles were then segmented 

into binary erosion tending or accretion tending classes depending on whether the shoreline had moved landward 

or seaward during the epoch following a particular lidar acquisition. This approach allows us to extract several 

features per profile and directly relate to shoreline change for a given epoch. A total of ten features were extracted 

to describe the variation in morphology along the beach (Table 1).  

Feature Units Feature Units 
Beach slope (S) (m/m) Mean curvature (C) (m/m2)
Near-shoreline slope (NS)  (m/m) Orientation (O) (degrees) 
Beach width (W) (m) Standard  deviation of height (SD) (m) 
Volume-per-width (V) (m3/m) Deviation-from-trend (DT) (m) 
Mean gradient (G) (m/m) Max gradient (MG) (m) 
Table 1. Extracted features to characterize beach morphology alongshore. 

4. GENERALIZED LOGISTIC MODEL 

To model the joint effect of the features on the outcome of erosion, logistic regression is applied.  Logistic 

regression is a member of the family of generalized linear models (GLMs) and can be applied to regress a binary 

class variable (0,1) on predictor variables [6].  Furthermore, logistic regression provides a rigorous statistical 

framework to evaluate the influence (importance) of each feature within the fitted model on determining class 

occurrence. Consider our case where we have binary observations,  for i  = 1 to N profiles, indicating whether 

profile i  belongs to class erosion tending or class accretion tending as defined previously.  We arbitrarily set 
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1iy  to indicate that a profile belongs to class erosion and 0iy  to indicate that a profile belongs to class 

accretion.  Our objective then is to estimate the probability of class erosion, 1iy , for a specific profile given an 

input vector of morphologic features, )|1( iiii yP xx .  The basic logistic model assumes the following 

parametric form for  [6] [7], iP
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where  is a k + 1 column vector of coefficients for our k = 10 features and an intercept term and 

11 ikki xx ...0ix is called the linear predictor. To model our data effectively, a generalized 

estimating equation (GEE) is applied to handle spatial correlation in the binary responses [8]. To reduce model 

over fitting and address collinearity among the features themselves, the penalized Lasso criteria is employed 

providing more robust classification [9].   

5. RESULTS 

Logistic GEE models were fit to each data epoch to evaluate their impact on class occurrence (Table 2). The most 

influential positive and negative coefficients for each epoch are shown in bold.  The features are standardized to 

provide ease of interpretation. Positive coefficients indicate that an increase in feature value results in an increase 

in probability of class erosion, and the converse is true for negative coefficients. For example, in Epoch 1 beach 

width (W) is most influential on the outcome of class erosion where a 1  increase in W produces, on average, a 

1.70 increase in the log odds of class erosion ( 33width m). Note that Lasso penalization results in a reduction 

of feature coefficient magnitudes, with some non-significant terms reduced to zero; however, the relative 

importance of the features for a given epoch was generally maintained. 

Table 2. Fitted logistic GEE feature coefficients for each epoch. * indicate potentially non-significant features. 

Feature Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 
W 1.70  2.76  0.47 * 0.01 1.38  -0.60* 
V 0.95  -1.80 0.21  -0.07* -0.02 0.63  
DT  -0.74 -0.93 -0.49 -1.12* -0.90 1.55 * 
MG 0.15  0.18  -0.08* 0.12 * -0.82 -0.30* 
NS -0.09 0.13  -0.18* 0.01 * 1.98  -0.06* 
O 0.29 -0.27 1.38  1.18  -0.17 -0.93* 
G 0.71  -0.26* 0.09 * -0.19* 0.66  0.41 * 
C 0.12  -0.03* 0.05 * 0.03 * -0.10 -0.74* 
SD 0.14  0.07*  0.01  -0.01* -0.01 0.03 * 
S -1.47 -0.12* -0.49* -0.40 -0.87 -1.19*

To provide an example of the potential utility of the logistic GEE model for beach characterization, Figure 1 

shows estimated probability of erosion as a function of orientation (O).  Four logistic plots are displayed:  change 



in probability vs. O given the mean values of all other features, given a two deviation increase in S, given a two 

deviation decrease in S, and given a two deviation increase in S and DT.  From the plot, we observe that as the 

beach approaches a more east to southeasterly orientation, its probability to erode increases.   
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Figure 1. Estimated probability of erosion vs. orientation for Epoch 3 (s.d. is standard deviation). 

Finally, we evaluated the ability of the Lasso penalized GEE model to classify profiles more or less prone 

to erosion given the morphologic features. For each epoch a random subset of the profiles (< 30%) was selected 

for model training and the remaining majority of profiles reserved for testing.  The Lasso model had a mean 

classification accuracy of 80% across all epochs with a high classification rate of 86%. Overall, results are 

encouraging and demonstrate the potential of the developed logistic framework to effectively model and 

characterize patterns in beach change measured within multi-temporal lidar data.
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