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1. INTRODUCTION 

Earthquakes occur and cause loss of life and property. To help disaster preparation and prevention, it is important 

to predict potential earthquake risks, especially in earthquake-active areas, or earthquake hot spots. In this paper, 

an earthquake hot spot is defined as a region of highest earthquake risk or with significant earthquake activities 

within a larger area of low or normal earthquake activities. Such predictions usually explore spatial information 

using spatial data mining.  Spatial data mining examines spatial relationships such as topology, distance, and 

direction [7] and aims to discover patterns of interest automatically [2].  Clustering analysis is a common spatial 

data mining approach that focuses on finding clusters of data objects which share similarity based on certain pre-

defined criteria. Since hot spots can also be regarded as clusters of spatial data points, their identification has 

drawn considerable research attention in spatial data mining [2, 5, 7, 9].  

An overview of various types of existing clustering algorithms, including partitioning, hierarchical clustering, and 

density-based clustering, can be found in [4]. Density-based clustering is usually more efficient than the other two 

types because density clustering of neighboring data points is usually based on local conditions and thus only 

requires one scan of the entire database [4]. A density-based clustering algorithm DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) was first introduced by Easter et al. [3]. DBSCAN grouped data 

points into regions based on a single value density measure that used the number of points within a given 

neighborhood [3]. With this measure, DBSCAN showed performance improvement over the partitioning 

algorithm CLARANS [6]. Hinneburg and Keim [4] introduced DENCLUE (DENsity-based CLUstEring), which 

used the Gaussian kernel influence function as the density measure. In DENCLUE, a hill climbing procedure 

moved in the direction of the gradient of the influence function [5].  Compared to DBSCAN, DENCLUE showed 

significant efficient improvement [4]. Based on [4], Jiang et al. [5] developed a weighted Gaussian kernel 

influence function as the density measure and presented SCDE (Supervised Clustering Density-based Estimation).  

Unlike DENCLUE, SCDE used the sign of the influence function to determine the direction in which to continue 



hill climbing. Compared to algorithms such as SPAM and SCMRG, SCDE generated higher maximum rewards 

and better fitness values [5]. 

One of the essential challenges for existing clustering approaches is lack of consideration for clustering features of 

high dimensions [4]. Many of them either emphasize on the horizontal dimension or consider the vertical 

dimension without using density-based clustering [1, 2, 6, 7]. Therefore, methods for using the depth data 

meaningfully and effectively in density based clustering algorithms deserve further research attention. This paper 

takes a first step towards using three dimensional variables to describe data object in supervised density-based 

clustering, and provides a revision to the existing SCDE algorithm by considering the impact of depth on 

interrelated spatial data objects to identify earthquake hot spots.  

2. RESEARCH STATEMENT  

The research statement is formulated as follows: given a set of spatial data points representing earthquake 

occurrences in an area at a given time frame, develop a density-based clustering method that is able to describe 

the spatial characteristics of the data objects, apply the method to extract meaningful information that will indicate 

the regional earthquake risk, and use the information to discover the highest risk regions (i.e. hot spots) in that 

area.  The term “region” here refers to a clustering result and is not associated with any political or administrative 

boundary. 

SCDE describes a data object in the form of (<location_x, location_y>, <variable of interest>) where the 

variable of interest refers to the earthquake risk. The depth variable, or the distance from the epicenter to the 

earthquake focus, is not considered by SCDE in the location pair, but is commonly available in many spatial 

earthquake data sources. Thus it is intuitive to think that depth is relevant to earthquake risk.  To count its impact 

in earthquake hot spot identification, this paper provides a revision to SCDE.  In the revision, a data object is 

described by a location triple of <longitude, latitude, depth> as well as the variable of interest. Accordingly, the 

gradient of the density function of all data objects in a dataset will be recomputed with the addition of the depth 

variable in the corresponding hill climbing procedure. 

3. EXPERIMENTAL DESIGN AND EVALUATION 

The experiment is developed as follows: The selected area is Northern California and the sample data is retrieved 

from querying the online USGS Northern California Earthquake Catalog database (http://www.ncedc.org/maps/).  

Magnitude is selected as the variable of interest in this experiment based on its geological meaning and 

uniqueness.  In the query, the minimum magnitude is set with a system default of 3.0 and the maximum 

magnitude is set as unlimited.   The query also includes earthquakes from all depths and excludes events with no 



reported magnitude. The time frame in the query is set between 2002/01/01, 00:00:00 (a system default) and 

2008/10/18, 00:00:00, the later of which is a week from the day that this research was first started.  After the 

query submission, a total of 1483 earthquake records (sample dataset S) are retrieved from the database. 

The independent variable in this experiment is the usage of the depth of a spatial data object in SCDE. Depending 

on whether the depth variable will be used to describe a data object in SCDE, there are two treatments: the SCDE-

with-depth treatment (T1) and the SCDE-without-depth treatment (T2).  The former is the revised algorithm and 

the latter is the original SCDE algorithm. Three dependent variables will be measured: (1).The highest rewards 

(HR) computed from the reward function in SCDE. The reward function considers both the impact of the number 

of clusters and the interestingness of all resulting clusters, and HR finds the best tradeoff between the two. The 

treatment with a higher HR is preferred; (2). The fitness value (FV) calculated from the fitness function in SCDE. 

FV measures the overall reward for all resulting clusters and a higher FV is preferred. (3).The accuracy. Since the 

ultimate concern of this research is to identify hot spots of earthquakes, earthquake domain expertise is used to 

evaluate the clustering results. To do so, the clustering results are plotted on a three-dimensional map using a 

Geographic Information System (GIS) map viewer tool and overlaid with the 2008 California Seismic Hazard 

Map retrieved from the USGS website.  This map classifies geographic locations into different zones of varying 

quantitative risk probabilities. Denote category A as the total number of data objects in the sample data set S that 

fall into the high level hazardous areas in the 2008 California Seismic Hazard Map; denote category B as the total 

number of data objects from the cluster with the highest reward and fall into the high level hazardous areas in the 

2008 California Seismic Hazard Map.  The accuracy (AC) of the prediction can be computed as:  Accuracy = B/A.          

Two nuisance variables are selected to control the experiment: 1. the standard deviation of the influence 

function, as [5] indicated that it is the most critical variable in SCDE that determines the size of the influence 

region of a data object. This research will follow the same  value (0.75) as chosen in [5].  2. The penalty 

parameter  which determines the penalty associated with the number of generated clusters.  This paper will 

follow the same choice of  in [5]: 1.01 and 1.2. 1.01 is suggested as a good value to identify very local hot spots 

and 1.2 as a good value for more regional hot spots [5].  

The two algorithm treatments are implemented in MATLAB R2006a and most spatial operations are performed in 

ArcMAP 9.3. Figure 3-1 and 3-2 show an example of the preliminary clustering results with points representing 

category B in the Accuracy formula above. More results and evaluation will be presented in the full paper.  



Figure 3-1 High risk points (shown as red flags) 
identified by the revised SCDE that fall into the 
high level hazardous areas (in pink) in the 
California Seismic Hazard Map. 

Figure 3-2 High risk points (shown as red flags) 
identified by SCDE that fall into the high level 
hazardous areas (in pink) in the California 
Seismic Hazard Map. 

4. CONTRIBUTIONS AND CONCLUSIONS 

One popular topic in spatial data mining is identifying earthquake hot spots. The vertical dimension of a data 

object contains relevant spatial information and has not been fully explored by existing density-based clustering 

algorithms.  This paper provides a revision to the SCDE algorithm by introducing depth to describe data objects 

and develops an experimental design to examine the two treatments on an earthquake dataset. The results indicate 

that the treatment with the depth variable generates a higher fitness value, highest reward, and accuracy.  
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