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1. INTRODUCTION

Unsupervised classification, also called clustering, has been a classical problem in pattern recognition. Clustering

has also been used for a wide variety of tasks in remote sensing image analysis such as pre-processing, segmentation,

feature extraction, dimensionality reduction, data visualization, and final classification. One of the most widely used

family of clustering algorithms includes iterative partitioning methods among which k-means and its extensions such

as fuzzy c-means, k-medoids, and isodata have been the most popular choices. These methods attempt to iteratively

minimize an error criterion and terminate the iterations when a local minimum is reached.

Despite their popularity, these methods, and similarly most other clustering methods, have common problems

in the following issues: restrictions on the shapes of the clusters, high dimensionality of the feature space, feature

selection, identification of the number of clusters, and sensitivity to initialization. For example, the k-means algo-

rithm that minimizes the sum of squared errors criterion is very limited in terms of its cluster modeling capability

because it can only model spherical clusters with similar number of data points. It also gives equal importance to

all features by using the Euclidean distance for point dissimilarity. Furthermore, the notion of distance in high di-

mensions becomes unclear when the feature space becomes very sparse compared to the number of available points.

The model-based clustering approach that uses Gaussian mixture models (GMM) that are learned by maximizing the

likelihood function using the expectation-maximization (EM) algorithm is superior to k-means in the sense that it is

capable of finding clusters of arbitrary ellipsoidal shapes with arbitrary number of data points. However, significant

difficulties in the estimation of the parameters of the GMM model (e.g., covariance matrix estimation) are observed

in increasing dimensions. Furthermore, both the k-means and the GMM-EM algorithm are very sensitive to initial-

izations and easily get trapped in local minima. In practice, these algorithms are run many times with different initial

parameters, and various local search heuristics are used to find better parameters near the converged ones.

Constant increase in computational power has made population-based stochastic search algorithms very popu-

lar. Consequently, various population-based global optimization algorithms have been proposed to solve clustering

problems. For example, Chang et al. [1] used a genetic algorithm to improve the k-means clustering algorithm,

Maulik and Saha [2] used differential evolution for fuzzy c-means clustering, and Paoli et al. [3] used particle swarm

optimization for estimating GMMs. All three methods were applied to pixel-based classification of satellite images.
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The use of the Gaussian distribution as the class-conditional density model for multispectral data has been well ac-

cepted in the remote sensing literature. Therefore, it is of great interest to extend the population-based optimization

algorithms for the estimation of GMMs. In this paper, we propose a clustering algorithm that uses particle swarm

optimization (PSO) for finding an optimum solution for GMM estimation. The proposed algorithm solves three im-

portant problems that exist in related work: the lack of a suitable parametrization for arbitrary covariance matrices,

updating of the parameters from data in conjunction with the stochastic search, and the degeneracy problem due

to the interchangeability of different parameter orderings for the same candidate solution. Section 2 summarizes

the general PSO framework and discusses the limitations of existing approaches, Section 3 presents the proposed

clustering algorithm, and Section 4 illustrates its effectiveness in the classification of a hyperspectral image.

2. PARTICLE SWARM OPTIMIZATION

PSO is a population-based stochastic search algorithm based on the movement and the intelligence of swarm animals.

In PSO, each solution is represented as a particle in a swarm. Each particle has a position vector zi and velocity

vector vi. For a d-dimensional optimization problem, the position of each particle zi ∈ Rd represents a candidate

solution. A fitness function uses the particle’s position and assigns a fitness value to that particle. The particle

having the best fitness value is called the global best (zgb). Each particle also remembers its best position since

the first iteration and this position is called the personal best (zpb,i). In the first iteration, each particle is typically

initialized with a random position and velocity. In the following iterations, each of the d velocity components in vi

is updated independently using the global best and its own personal best in a stochastic manner as

vi(t + 1) = w vi(t) + c1 r1(t) (zpb,i(t)− zi(t)) + c2 r2(t) (zgb(t)− zi(t)) (1)

where w is the inertia weight, r1 and r2 represent random numbers sampled from Uniform[0, 1], and c1 and c2 are

small constants. The particle moves from its old position to a new position using its velocity vector as

zi(t + 1) = zi(t) + vi(t + 1), (2)

and updates its personal best if needed. After each iteration, the global best of the whole swarm is also updated.

The most important property of PSO is its use of the global best to coordinate the movement of all particles and

the use of personal bests to remember the history of each particle where the global best serves as the current state of

the problem and the personal bests serve as the current states of the particles. However, there are various problems

that need to be solved in order to efficiently apply population-based algorithms like PSO to clustering problems. An

important problem is the lack of a suitable parametrization for arbitrary covariance matrices. Since each component

in the particle position vector zi is independently updated using the corresponding component in the velocity vector

vi, it is not possible to include an arbitrary covariance matrix with d(d + 1)/2 parameters to a particle definition

because independent updates of the covariance components will very often violate the requirement for the matrix

being symmetric and positive definite. Hence, existing methods limit their cluster model to diagonal covariance

matrices [3] or do not use any covariance structure at all [1, 2]. We propose a new parametrization where the pa-

rameters of arbitrary covariance matrices are unique and independently modifiable. Another problem is the updating

of the parameters from data in addition to the randomized search procedure that can have convergence problems



especially when the model contains many clusters with many parameters. The proposed covariance parametrization

allows us to update the cluster parameters from data in conjunction with the stochastic search, and enables faster and

more effective convergence. The third problem that is tackled in this paper is the degeneracy problem. Degeneracy

occurs when multiple representations for the same solution exist. There exists K! different particle representations

in clustering problems with K clusters due to different parameter orderings for the same candidate solution. This

problem is often ignored in local search algorithms but it causes big problems for population-based stochastic search

algorithms because the correspondences between cluster parameters of different particles are not known and particle

updates using (1) will be based on wrong interactions. We propose a matching algorithm for finding the correct

correspondences between the components of a particle and the global best for correct updates.

3. PROPOSED CLUSTERING ALGORITHM

The details of the clustering model are briefly described below due to space limitations. The final version of the

paper will include more detailed descriptions.

Parametrization and particle definition: The proposed clustering model uses a mixture of K multivariate Gaussian

distributions parametrized using Θ = {π1, μ1, Σ1, . . . , πK , μK , ΣK} where πk ∈ [0, 1] are the prior probabilities,

μk ∈ Rd are the means, and Σk ∈ Rd×d are the covariance matrices for the clusters k = 1, . . . , K. The K

prior probability values are calculated from the probabilistic assignments of the data points to the clusters, and

are not part of the PSO particles. Each particle consists of the parameters of the mean vectors and the covariance

matrices. Each mean vector is parametrized by d real numbers. Our parametrization for each covariance matrix is

based on its eigenvalue decomposition using the cyclic Jacobi algorithm and QR factorization of the corresponding

eigenvector matrix via Givens rotation matrices [4]. The eigenvalues are parametrized as d positive real numbers

and the eigenvector matrix is parametrized in terms of d(d − 1)/2 Givens rotation angles. Robust estimation of

covariance matrices in high dimensions becomes possible because regularization can be performed on very small

eigenvalues to avoid singularities. This parametrization allows independent updating of each parameter and enables

the use of full covariance models in the GMM.

Initialization: First, the K mean vectors are randomly selected from the data points. Then, the initial clusters are

formed by assigning each data point to the closest mean. Finally, the covariance matrix of each cluster is computed

and the angles and eigenvalues are estimated using the cyclic Jacobi algorithm and QR factorization [4].

Optimization: The PSO iterations proceed to find the parameters that minimize the negative log-likelihood function

with the assumption that the data points are independent and identically distributed.

Parameter ordering and update equations: Before updating each particle, the correspondences between its clus-

ters and the clusters of the global best particle are found. The matching problem is formulated as a minimum cost

network flow optimization problem where the objective is to find an ordering of individual clusters so that the sum

of Mahalanobis distances between the means of a particle and the corresponding means of the global best particle is

minimized. After the correspondences are obtained and the individual clusters of the particle are re-ordered, (1) and

(2) are used to update the parameters.

Particle updating using data: The parameters of the global best particle are updated by estimating a new covariance

matrix using the data points assigned to each cluster and by performing another set of eigenvalue decomposition and

QR factorization steps.
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Fig. 1. Results for the Indian Pines data set.

4. EXPERIMENTS

Initial experiments were performed to compare the proposed PSO-based clustering algorithm with the GMM-EM

algorithm using a 145 × 145 pixel AVIRIS image taken over Indiana’s Indian Pines test site. Since the GMM-EM

algorithm cannot estimate full covariance matrices due to singularity issues, the 9-band subset that came with the

original data was used instead of the whole set of 220 bands.

Figures 1(a) and 1(b) show the false color image and the 16-class ground truth, respectively. As the best possible

performance that can be achieved by Gaussian classification, we performed supervised maximum likelihood classi-

fication using the whole ground truth as training data as shown in Figure 1(c). The PSO algorithm was run using 30

particles for 60 iterations with the results shown in Figure 1(d). The GMM-EM procedure was run using 30 different

random initializations for 500 iterations. Figures 1(e)–1(i) show the results for five cases that resulted in the highest

likelihood values. Quantitative results computed by matching the clusters obtained using unsupervised methods with

the ground truth labels showed that the proposed algorithm obtained an accuracy rate much closer to the one by the

supervised classifier compared to the best GMM-EM runs.
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