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Availability of rich spectral information, as obtained from hyperspectral sensors, 

makes it possible to design ground cover classification systems that can perform highly 

accurate mapping and target recognition tasks [1], [2], [3].  Hyperspectral imaging is 

particularly powerful for vegetation species identification, growth stage monitoring, and 

stress characterization.   HyspIRI, an NRC decadal survey mission, is much anticipated 

by researchers to aid in answering a wide variety of global ecological and anthropological 

questions.  For example,  

•  What are the composition, function, and health of terrestrial and aquatic ecosystems? 

•  How are these ecosystems being altered by human activities and natural causes? 

• How do these changes affect fundamental ecosystem processes upon which life on 

Earth depends? [4], [5] 

In order to tackle these research topics and effectively exploit the seasonal global 

imaging spectroscopy provided by HyspIRI, there will be a great need for reliable 

hyperspectral-based products for use by domain experts.  Arguably, easily accessible data 

products have been the key to the success of engaging domain experts and end-users in 

cases such as Landsat and MODIS.  In those cases, simple multispectral products, such as 

NDVI, are well understood by both the mission teams and end-user communities. 

However, even though a great deal of research is conducted in hyperspectral image 

analysis, standard hyperspectral-based products do not currently exist.



In recent work [6], the authors generated “proxy” HyspIRI data from handheld 

Analytical Spectral DevicesTM (ASD) [7] hyperspectral data. The handheld data was 

matched to the spectral specifications of the HyspIRI sensor. Figure 1 illustrates sample 

proxy HyspIRI signatures. The efficacy of current state-of-the-art land-cover 

classification systems (such as [8]) was studied on this proxy HyspIRI data. In this work, 

we will study the efficacy of HyspIRI observations in precision vegetation mapping 

applications, specifically aquatic invasive vegetation mapping, under limited ground-truth 

availability. In particular, sensitivity to the amount of training data, mixed pixel 

conditions, and temporal misalignments (training and testing on different phases of the 

phonological cycle of the vegetation) will be studied for a variety of conventional and 

state-of-the-art hyperspectral analysis techniques, such as principal component analysis 

(PCA), Fisher’s linear discriminant analysis (LDA), stepwise linear discriminant analysis 

(SLDA) also known as discriminant analysis feature extraction (DAFE), and multi-

classifier decision fusion (MCDF) systems. This study will provide valuable insight on 

the relationship between the quality and quantity of available ground-truth and 

performance of classification systems with these HyspIRI observations.

Furthermore, the authors will present results of the various hyperspectral analysis 

techniques’ sensitivity to sensor error, for a variety of errors that could likely be present 

in HyspIRI data, such as symmetric failure (failure by frown), asymmetric failure by 

twist, and asymmetric failure by spectral-IFOV shift. Please see Figure 2.  The authors 

intentionally introduce cross-track non-uniformity into the HyspIRI proxy data and 

quantify the sensitivity of the analysis techniques to these types of sensor error.  This type 

of sensitivity analysis will be essential for utilizing existing hyperspectral analysis 

techniques during the actual HyspIRI mission. Figure 3 shows example results that will 

be included in this paper. 
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Figure 2.  Illustration of two different modes of failure of cross-track uniformity. (Figure courtesy of 
Robert Green, 2007). 
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Figure 1: 2151 band ASD data and sample Gaussian averaging window locations (left), 212 band Proxy 
HyspIRI data generated from the ASD data (right) using the bank of averaging windows spaced 10nm 
apart, with a Full-Width Half Maximum (FWHM) bandwidth of 10nm.  
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Figure 3: Example results of HyspIRI proxy data analysis. (a) Sensitivity of hyperspectral analysis 
technique to target abundance within pixel. (b)  Sensitivity of hyperspectral analysis technique to 
temporal misalignment between ground truth data and satellite pass over. (c) R2 values resulting from 
multivariate linear regression analysis of spectral band features with vegetation chemical content.  
Note:  PCA – Principal Component Analysis, LDA – Fisher’s Linear Discriminant Analysis, SLDA – 
Stepwise Linear Discriminant Analysis (also known as DAFE or Discriminant Analysis Feature 
Extraction), MCDF – Multi-Classifier Decision Fusion.  

% Overall Recognition Accuracy 
(95% Confidence Interval)

Abundance PCA LDA SLDA MCDF
1 62.5 (1.6) 50.1 (1.7) 99.7 (0.2) 99.7 (0.2)

0.9 60.6 (1.6) 54.1 (1.7) 99.3 (0.2) 99.7 (0.2)
0.8 58.9 (1.6) 55.1 (1.7) 97.1 (0.5) 97.7 (0.5)
0.7 54.8 (1.7) 57.3 (1.6) 66.0 (1.5) 62.5 (1.6)
0.6 47.8 (1.7) 58.6 (1.6) 50.6 (1.6) 50.6 (1.6)
0.5 46.1 (1.7) 58.3 (1.6) 50.3 (1.7) 50.3 (1.7)
0.4 47.1 (1.7) 54.1 (1.7) 51.1 (1.7) 50.3 (1.7)
0.3 47.8 (1.7) 55.1 (1.7) 50.3 (1.7) 48.1 (1.7)
0.2 48.1 (1.7) 53.5 (1.7) 50.3 (1.7) 50.3 (1.7)
0.1 51.1 (1.7) 54.8 (1.7) 52.2 (1.7) 52.2 (1.7)
0 50.3 (1.7) 50.3 (1.7) 50.3 (1.7) 50.3 (1.7)

% Overall Recognition Accuracy 
(95% Confidence Interval)

Temporal
Misalignment PCA LDA SLDA MCDF

±1 week 60.5 (1.6) 50.1 (1.7) 97.7 (0.4) 99.7 (0.2)

±2 week 58.6 (1.6) 54.1 (1.7) 97.1 (0.5) 97.7 (0.5)

±4 week 56.7 (1.7) 53.2 (1.7) 73.1 (1.0) 92.6 (0.5)

±6 week 52.8 (1.7) 52.3 (1.7) 72.2 (1.3) 74.5 (1.0)

±8 week 46.6 (1.7) 53.2 (1.7) 58.6 (1.6) 62.0 (1.5)
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