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correction, and with the uncertainty as estimated above – Case 3: realistic correction.  The ACO algorithm 

is used also to take out the ocean aerosol and ocean surface reflectance contributions from the TOA 

radiance (5).  Then the Ocean Color & Chlorophyll (OC/C) algorithm (6) can be employed to retrieve the 

data products, Chlorophyll concentration and Inherent Optical Properties – absorption and back-scatter 

(IOP_a and IOP_b).  

As a preliminary assessment, the polarization performance of VIIRS on NPOESS basically 

appears to be good for the Ocean Color EDR, based on preliminary sensitivity evaluations using GSD 

simulations and a VIIRS polarization model based on thoroughly characterized VIIRS F1.  The 

evaluations show that correction for VIIRS’ polarization sensitivity works well and significantly 

suppresses errors in Lw, comparing cases 1 and 3 above.  The evaluations also show that VIIRS’ 

polarization characterization uncertainty has a modest effect on Lw accuracy, and a minor effect on Lw 

precision.  The paper provides a more complete quantitative description of the results on the impact of 

VIIRS’ polarization sensitivity on Ocean Color, in terms of Lw truth vs retrieval, and accuracy, precision, 

and their stratification with Lw, etc., toward assessing the polarization performance of VIIRS for good 

ocean color capability on NPOESS. 
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