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1. INTRODUCTION

Hyperspectral image unmixing has received considerable interest in remote sensing image processing due to the signi cantly
improved spectral resolution by recent advances in hyperspectral sensing instruments. The need for hyperspectral image unmix-
ing in remotely sensed imagery arises from the fact that the sampling distance is generally larger than the size of the targets of
interest. For example, NASA’s AVIRIS imaging system has a spatial resolution of 20 meters when ying at 20 kilometers above
sea level. Under this circumstance, it is likely that a pixel area is occupied by more than one material. Two mixture models
have been proposed to represent the synthesis of the mixed pixels. One is a linear model that considers a mixed spectrum as
a linear combination of endmember spectra present in the pixel area weighted by fractional area coverage [1]. The other is a
nonlinear model [2]. As the linear model is the most frequently used model for studying material quanti cation, we consider
only the linear model in this paper.

Assume that there are L spectral bands and that r is an L-dimensional pixel vector. Suppose there are p (p < L) distinct
endmembers present in the pixel area and their spectra are m1, m2, . . . , mp, respectively. The fraction of each endmember is
speci ed by the values α1, α2, . . . , αp. The linear mixture model can be expressed as follows:

r =
p∑

i=1

αimi + n = Mα + n (1)

where M = [m1, m2, . . . ,mp], α = [α1, α2, . . . , αp]
T , and n represents additive noise.

To be physically meaningful, the nonnegativity constraint requires all abundances to be nonnegative such that α i ≥ 0 for all
1 ≤ i ≤ p. A few papers in the literature also incorporate another physical constraint, known as the sum-to-one constraint when
estimating endmember fractions [3, 4, 5]. The sum-to-one constraint demands

∑p
i=1 αi = 1. Nevertheless, this condition is

strictly valid for the situation where the endmembers are arranged on the surface in a segregted manner, which is almost never
satis ed in reality [6]. As a result, a method speci cally designed for the sum-to-one constraint can easily become vulnerable
when the sum-to-one condition does not remain valid. In this paper, we relax the sum-to-one constraint as we develop our
estimation approach. The sum of the estimated fractions in every pixel is bound to a range rather than being xed on the value
of one. From now on, we call it the relaxed sum-to-one constraint. In Section 2, we replace the sum-to-one constraint with the
relaxed sum-to-one constraint and develop a least squares solution via quadratic programming, which has been demonstrated
applicable to linear unmixing in our previous work [5]. Computer simulations are offered in Section 3 to show that fully
constrained methods can become incompetent due to a slight variation in the sum of the fractions and that our method with
relaxed sum-to-one constraint is superior to the fully constrained methods in terms of variation.

2. UNMIXING WITH NONNEGATIVITY AND RELAXED SUM-TO-ONE CONSTRAINTS

The hyperspectral image unmixing problem can be formulated as the following optimization problem:

Minimize f(α) = (r −Mα)T (r −Mα) = αT MT Mα− 2rT Mα + rT r (2)

The relaxed sum-to-one constraint (RSC) and nonnegativity constraint (NC) have the following forms:

RSC : l ≤ Eα ≤ h and NC : −Bα � 0 (3)

where the p-dimensional vector E = [1, 1, . . . , 1], B is a p× p identity matrix, and p is the number of the endmembers present
in the pixel area. The inequality symbol � in Equation (3) represents componentwise inequality. The lower bound l and upper



bound h de ne the box constraint imposed on the abundance fractions. Combining the two constraints, we can get the inequality

functions Fα � d, where F =

⎡
⎣
−B
E
−E

⎤
⎦ and d =

⎡
⎣
0
h
l

⎤
⎦. The barrier method [7], a particular algorithm to quadratic programming

problem, puts the inequality constraint into the objective function by the logarithmic barrier function
∑p

i=1− 1
t log(Fi

T α),
where Fi

T is the ith row of F . The nal form is:

Minimize f(α) = αT MT Mα− 2rT Mα + rT r +
p∑

i=1

−1
t

log(Fi
T α) (4)

The logarithmic barrier function is an approximation to the indicator function. As t grows, the quality of the approximation
improves [7]. Newton’s method can nd the estimate by gradually increasing the value of t. The estimate obtained from each
iteration is used as the starting point for the next iteration. The details of our method are given in Algorithm 1. The Newton

step Δα and Newton decrement λ are determined by −∇2f(−α(k))−1∇f(α(k)) and
[
(Δα(k))T∇2f(α(k))Δα(k)

]− 1
2
, and

p is the number of the distinct endmembers.

Algorithm 1 Hyperspectral image unmixing

1: Initialize parameters t, α(1), μ, ε, εNewton

2: k = 1
3: while p/t > ε do
4: Compute the Newton step Δα(k) and the decrement λ
5: while λ > εNewton do
6: Find step size τ by backtracking line search
7: α(k) = α(k) + τΔα(k)

8: Compute the Newton step Δα(k) and the decrement λ
9: end while

10: t = μt
11: α(k+1) = α(k), k = k + 1
12: end while
13: α̂ = α(k)

3. EXPERIMENTAL RESULTS

In this section, we demonstrate a comparative analysis among OSP [8], QPFCLS [5], and our approach. The rst two approaches
are selected to represent the unconstrained and fully constrained approaches, respectively. A set of re ectance spectra is selected
from the USGS Digital Spectral Library [9]. The set contains seven spectra: maple leaf, blackbrush, pinon pine, aspen leaf,
saltbrush, azurite, and sagebrush. Their spectra are shown in Figure 1. In this example, 1000 mixed pixels are simulated. The
fraction of each endmember is illustrated in Figure 2.

3.1. Sum-to-one condition strictly satis ed

The sum of the fractions in each pixel is set to one to comply strictly with the sum-to-one condition. White Gaussian noise
is added to every spectral band to achieve the SNR of 30:1. The SNR is de ned as 1

L

∑L
i=1 λi, where L is the number of the

bands and λi is the SNR of the ith band, de ned as 50% averaged re ectance in the ith band divided by the standard deviation
of the noise. Figure 3 displays the fraction estimations of saltbrush, which is only added to pixel numbers 400–600 with 10%
fraction. The root mean square (RMS) errors are calculated to measure the similarity between the true and estimated fractions.
The RMS errors of the seven materials are tabulated in Table 1. We nd QPFCLS produces the best estimates. However, this is
not the case when we add variations to the fraction vectors.

3.2. Sum-to-one condition not satis ed

In this example, we add variations to the fraction vectors by multiplying each fraction vector by a random variable x, where
x ∼ N (μ, σ2). We set μ and σ to be 1 and 0.0304, respectively. The fraction vector that we are trying to estimate in each
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Fig. 1: Re ectance spectra.
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Fig. 2: Simulated fractions.
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Fig. 3: Estimation results of saltbrush obtained by OSP, QPFCLS, and our approach when sum-to-one condition is satis ed.

Table 1: Root mean square errors of seven materials when sum-to-one condition is satis ed.

Approach Maple leaf Blackbrush Sagebrush Aspen leaf Azurite Pinon pine Saltbrush

OSP 1.486 × 10−2 2.690 × 10−2 5.709 × 10−3 1.985 × 10−2 4.382 × 10−3 2.992 × 10−2 5.229 × 10−3

QPFCLS 6.378 × 10−3 2.242 × 10−2 4.648 × 10−3 1.295 × 10−2 3.534 × 10−3 2.647 × 10−2 3.956 × 10−3

Our approach 1.304 × 10−2 2.423 × 10−2 4.777 × 10−3 1.795 × 10−2 4.292 × 10−3 2.712 × 10−2 3.970 × 10−3

pixel becomes αNew = xα. The lower and upper bounds used in the relaxed sum-to-one constraint are selected to be 0.9 and
1.1. Estimation results of saltbrush and RMS errors of the seven materials are illustrated in Figure 4 and Table 2. Apparently,
QPFCLS, a fully constrained approach, has an enormous degradation in estimation performance, while our approach performs
the best in this case.
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Fig. 4: Estimation results of saltbrush obtained by OSP, QPFCLS, and our approach when sum-to-one condition is not satis ed.

Table 2: Root mean square errors of seven materials when sum-to-one condition is not satis ed.

Approach Maple leaf Blackbrush Sagebrush Aspen leaf Azurite Pinon pine Saltbrush

OSP 1.500 × 10−2 2.644 × 10−2 5.951 × 10−3 1.984 × 10−2 4.232 × 10−3 2.887 × 10−2 5.439 × 10−3

QPFCLS 4.821 × 10−2 4.496 × 10−2 1.801 × 10−2 5.383 × 10−2 2.198 × 10−2 3.472 × 10−2 9.754 × 10−3

Our approach 1.285 × 10−2 2.335 × 10−2 4.956 × 10−3 1.749 × 10−2 4.030 × 10−3 2.574 × 10−2 4.239 × 10−3

4. CONCLUSION

The relaxed sum-to-one constraint is proposed in this paper, and a comparative analysis is provided to demonstrate that the fully
constrained unmixing approach can become vulnerable for the situation where the sum-to-one condition is not strictly met. The
approach suggested by our paper, incorporating the nonnegativity and relaxed sum-to-one constraints are more capable of
unmixing problems when sum-to-one condition is not satis ed, which always occurs in reality.
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