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INTRODUCTION 

In this paper we present a conceptual framework that uses a knowledge based description logic approach to 

decide whether or not a computed motion vector corresponds to a sea surface current. For this decision we 

need to take different sources of knowledge into account. In [7] we have shown that low level image 

processing algorithms can be used to improve the derived motion fields by means of smoothness. However 

there are still cases where this correction may result in unwanted motion measurements that do not 

correspond to the sea surface currents. To solve problems like this, image interpretation systems have proven 

to be adequate [5]. 

 

DERIVATION OF HIGH-RESOLUTION SEA SURFACE CURRENTS FROM SATELLITE IMAGERY 

Currently there exist two well-known families of algorithms for the computation of sea surface currents from 

at least to satellite images of one region: the feature-based and the Optical Flow-based approaches. Both 

have in common that there have to be current tracers (e.g. sea surface films) visible in the images to be 

analyzed. The local sea surface currents cause the motion of these tracers, which allows an indirect and high-

resolution measurement of the currents [6].  

Before the feature-based local approaches can be used, one has to find the features of interest (e.g. algae 

signatures) in at least one satellite image a priori. After the detection of features different feature matching 

methods can be used (e.g. fast cross-correlation or shape-context matching). These methods usually assign a 

confidence value to each matching. 

The Optical-Flow-based approaches do not depend on knowledge about specific features. They result in a 

global motion field that represents the displacement of one satellite image relative to the other. The Optical 

Flow methods do not explicitly assign a confidence value to each motion vector. 

In this paper, we concentrate on results of feature-matching approaches based on surface film tracking on 

synthetic aperture radar (SAR) satellite imagery. The results of these approaches provide explicit information 

about the uncertainties of each motion measurement. Although the feature-matching methods are well 

known, and are highly optimized, there is always some chance of a measurement error. We can divide the 

error into two cases:  

1. A high correlation value of a motion that does not correspond to a real sea surface current and  

2. A low correlation value of motion that corresponds to a real current element.  



 
 

 

Due to the matching strategy, the first case occurs more often than the second one and cannot be 

compensated by low-level post-processing steps [7]. The origin of these erroneous motion measurements is 

the tracking of unsuitable features. These features can be ship wakes or wind induced surface anomalies that 

result in similar signatures in the SAR images. To solve this ambiguity, we need to classify the motion target 

with scene specific knowledge. 

 

SOURCES OF KNOWLEDGE 

We distinguish between two sorts of knowledge: dynamic factual knowledge about the scene depicted in the 

current image that is analyzed and static interpretation knowledge that allows the automated reasoning over 

the facts. Examples of factual knowledge about the scene comprise wind information, tidal information, 

position of ships and waterways, chlorophyll ratio, and sea surface temperature information for each selected 

feature at each spatiotemporal point.  

Moreover there are static interpretation rules given by domain experts 

- Biogenic surface films are often associated with a locally enhanced chlorophyll-a concentration  

- SAR signatures of wakes and surface films may look similar. 

- Wind and tidal forces mainly affect surface currents. 

The factual knowledge changes dynamically for each measurement. This may cause a huge amount of data, 

which cannot be represented inside the description logic efficiently. That is why there is a strong need of a 

multi-layer architecture with bottom-up reasoning for the task of detecting unreliable measurements. 

The interpretation knowledge is often compact enough to be represented inside such a system. The 

representation of this “higher knowledge” is independent from the factual knowledge. Knowledge engineers 

can revise it according to domain experts and their knowledge [3].  

 

THE DESCRIPTION LOGIC SYSTEM RACERPRO 

Description logics (DLs) are a family of knowledge representation languages, which originated from early 

attempts in the 1970s to model knowledge with class- or concept-based knowledge structures, i.e., Minsky’s 

Frames, and the so-called Semantic Networks.  Nowadays, DLs provide the semantic basis for the Semantic 

Web (e.g., OWL DL is basically a description logic).  Most contemporary DLs can be considered as subsets 

of first-order logic, and hence, the inference services offered by the corresponding systems are well-defined. 

Knowledge in DL systems comes in two disguises: class- or concept-based knowledge, and individual-

specific knowledge. Whereas the TBox models conceptual knowledge in terms of concept specialization and 

concept definition axioms, the assertional box, or ABox, contains a set of instance (or class) assertions and 

relationships between these instances. Standard DLs only support binary relationships, which are called 

roles. Together, TBox and ABox is called a knowledge base.  

In this work, the DL system Racer is used [1]. RacerPro implements the expressive description logic 

SHIQ(Dn), which offers transitive, functional and inverse roles, role specialization hierarchies, reasoning 

with datatypes (e.g., strings, reals, integers, booleans), and some additional concept constructors (e.g., the 

qualified number restrictions of OWL2). Racer was the first system of a new generation of highly optimized 



 
 

 

DL systems [1] that also supported ABoxes. Racer offers many advanced proprietary features, such as first-

order (grounded or) epistemic queries, rules, programmatic “server-sided” scripting, extensibility, and  some 

innovative inference services (such as abductive query answering). After more than 10 years of continues 

improvements, RacerPro is one of the fastest ABox reasoning system nowadays whose scalability for certain 

standard ABox benchmarks has been shown recently [2]. As such, it is an ideal basis for knowledge-

intensive applications which require ABox reasoning and ABox query answering and was thus selected for 

this research. In addition, Racer has proven to fit well for reasoning by means of computer vision scene 

interpretation [4]. 

 

KNOWLEDGE BASED DETECTION OF VALID SEA SURFACE CURRENT MEASUREMENTS  

We developed a prototypical framework that models the domain expert’s knowledge inside the TBox and 

uses the derived currents in conjunction with the other factual knowledge about the scene as ABox contents 

(Figure 1). To transfer the quantitative information into the ABox, we use an abstraction on the middle layer 

of the framework that maps the quantitative values to qualitative symbols. One example of a very simple 

TBox could be like this: 

 (all-disjoint water land) 

 (all-disjoint high-chlorophyll  medium-chlorophyll low-chlorophyll) 

 coastal <-> (and (some next-to water) (some next-to land))  

 valid-current -> (or (not (some next-to ship)) (not (some next-to waterway))) 

 valid-chlorophyll-amount -> (or high-chlorophyll medium-chlorophyll) 

 valid-current -> (all next-to valid-chlorophyll-amount) 

The abstraction from quantitative to qualitative values can be observed e.g. in the case of the chlorophyll 

amount. Instead of model floating-point values we use three categories: high, medium and low. Another 

abstraction can be found at the spatial neighborhood that is modeled as role “next-to”. Note that the system 

can derive knowledge about a “coastal” relationship using a TBox equivalence rule.  

We now present an example for an ABox: 

 valid-current(motionA) 

 next-to(motionA, water)  

 next-to(motionA, land) 

 next-to(motionA, high-chlorophyll) 

In this ABox, we assume that the measured motion is a valid current. We perform a so-called ABox 

consistency check, to finally get the answer to our question: Is the measured motion vector representing a 

valid sea surface current or not? Please note that the example above is a very simple one, just to demonstrate 

the basics needed for our approach. For this example, the measured motion “A” represents a valid current 

given the TBox above, because it is next to some higher chlorophyll amount than usual, and is not next to 

some waterway or ship. On the other hand the system derived that it belongs to a coastal region. 

 

CONCLUSIONS 

We have presented the main concepts of a flexible knowledge based framework and have given a first 

example of an application. A conceptual diagram is given in (Figure 1). Due to the multi-layer architecture of 



 
 

 

the framework and the RacerPro DL system, it is highly scalable and can therefore be used for reasoning in 

many areas of remote sensing. One of the key features is the separation of knowledge into static expert 

knowledge and highly dynamic knowledge. We implemented a running prototype, which results in 

promising but yet preliminary results [5]. The next steps are the integration of other knowledge sources and 

of more expert knowledge to improve the automatic reasoning. 

 

Figure 1: Diagram of the conceptual Framework showing the bottom-up reasoning approach. The 

geographical database represents the middle (integration) layer. 
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