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1. INTRODUCTION

Some current and planned Earth Observation missions provide global coverage from medium and high spatial resolution in-
struments with typical revisiting times around 2 − 3 days or 8 − 16 days. However, users continuously demand higher spatial
resolution images with better temporal and/or spectral resolution that cannot be provided by a single instrument. Image fusion
techniques allow us to combine information from different sensors into a single image product. In particular, high spatial res-
olution images can be merged with data from high temporal resolution systems to provide the continuous time-series at high
spatial resolution that are required by many operational applications such as land cover mapping, crop phenology, emergency
monitoring, or natural resource monitoring.

In this context, we propose an image fusion approach based on a multi-resolution and multi-source unmixing. The method-
ology proposed obtains a composite image with the spatial resolution of the higher resolution image (downscaling) while
retaining the spectral and temporal characteristics of the medium spatial resolution image. The approach is tested in the speci c
cases of MERIS/ENVISAT and Landsat/TM cases, but is general enough to be applied to other sensor combination.

2. PROPOSED DOWNSCALING METHODOLOGY

Fig. 1: Proposed scheme for
MERIS and Landsat image fusion.

The general idea of the proposed method is to combine the concepts of image fusion and
spatial unmixing. The goal is to essentially generate images with the spatial resolution
of Landsat 5 TM (30m, 7 channels in 0.45−2.35μm) and the MERIS spectral resolution
(FR 300m, 15 channels in 412.5−900 nm). The processing scheme is illustrated in Fig.
1, and can be summarized as follows. The proposed fusion algorithm is based on the
work in [1,2], but convenientlymodi ed to accommodate some important characteristics
of the particular problem. First, the Landsat image is segmented into a number of classes
K by using an unsupervised clustering algorithm, and the membership of each Landsat
pixel to the clusters is also calculated (i.e. Landsat pixels are considered as mixed pixels
rather than as pure land covers). Next, these posterior probabilities at Landsat resolution
are used to get the abundance or proportion for each MERIS pixel. Then, each MERIS
pixel is unmixed in a window by the inversion of a system of linear mixture equations,
i.e. spatial instead of spectral unmixing. A regularization term is added to the cost func-
tion to limit the large deviations of the unmixed pixels from natural spectral prototypes
for each class. Finally, the fused image is obtained by assigning the estimated spectra
to the corresponding Landsat pixels, which are estimated from the MERIS endmembers
of each land cover weighted by the Landsat posterior class (land-cover) probabilities.
The use of these posteriors from the Landsat image guarantee the spectral variability
of the land cover classes within each MERIS pixel footprint in the fused image. In the
following, we analyze the main steps of the algorithm in further detail.

2.1. Soft clustering of the high resolution image

The rst step in the algorithm consists of an unsupervised classi cation of the Landsat image. We selected the algorithm of
self-organizingmaps (SOM) [3] due to several reasons: 1) it carries out a topology preserving mapping from the D-dimensional
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input space onto a two-dimensional grid ; 2) it gives better initialization than the k-means algorithm for mixture density model-
ing since it gives better generalization to the test data; and 3) it produces probabilistic (soft) outputs to be used in the next steps
of the proposed method. Other clustering algorithms could be equally used, such as Gaussian mixture models or graph-cuts
though. The method requires the de nition of a number of clusters or classes K to be found in the image.

Hereafter, superscript (M) refers to MERIS pixels and superscript (L) to Landsat pixels. The soft clustering approach yields
a relative membership function to each pixel in the clustering solution. We modeled this as a monotonic decreasing function [4],
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range [1,∞) but good results are typically obtained in [1.1, 5], and Σ is a positive de nite covariance matrix implementing the
Mahalanobis distance.

2.2. Sliding-window spatial unmixing of the low spatial resolution image

The proportions of land-cover classes in a MERIS pixel is estimated as the average of the previously estimated class proportions
of Landsat pixels contained in the MERIS pixel footprint P : A

(M)
k = 1

|P|

∑
i∈P A

(L)
ik . The MERIS image is processed in

windows of size w×w centered in pixel S
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i . In each MERIS window, we run a linear spatial unmixing by solving the linear

equations system in matrix notation,
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where S
(M) are the actual MERIS spectra in the windowW , Ê(M) are the estimated pure spectra in the window for each class,

K is the number of classes, N is the number of MERIS bands, and e are the errors or residuals of the linear model. Note that,
unlike standard spectral unmixing, we are estimating endmembers rather than abundances. Therefore, this problem is solved
individually for each MERIS spectral band by optimizing:
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2.3. Regularized linear unmixing

Note that the unmixing process could be carried out for the whole image in one shot, but this would make all pure spectra of
each class to collapse to the average one, hence disregarding the spectral variability. Besides, in this case, the number of classes
needed for characterizing the scene adequately would largely increase (K > 100 classes are generally needed for heterogeneous
images). The sliding window approach allows us to obtain more variability for a given land-cover but, unfortunately, adds one
more free parameter to study, the optimal window size. The window should contain enough MERIS pixels for the sake of a
robust system inversion, but also, the window should allow us to correctly characterize the pure spectra present in the MERIS
pixel for the sake of good fusion quality. On the contrary, the size of the window should be small enough to re ect the variability
of the low resolution image (Landsat) to avoid the aforementioned spectral collapse.

An additional problem appears from the band-by-band unmixing approach, which may give rise to unrealistic estimated
spectra, as the spectral shape is not imposed in any way. Furthermore, the purest spectra (extreme values of the vertex) are
rarely selected as they increase the unmixing error. These problems are alleviated here by including a regularization term in the
cost function [1]:
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where S̄
′(M)
k are a set of ‘prede ned’ endmembers per class selected from the set of MERIS pixels giving higher abundance

levels for each class, and λ is a regularization parameter that avoids that found endmembers in a window differ too much from
the expected class spectra.

2.4. Spectral assignment

Once the class endmembers in each windowW are estimated, one could simply assign the estimated endmember to each Landsat
class pixels in the window. This approach is problematic because all pixels of the same class in the analyzed window would have



(a) RGB LANDSAT acquisition (b) RGB downscaled image

(c) NDVI LANDSAT acquisition (d) NDVI downscaled image

Fig. 3: RGB composition and NDVI for the original Landsat acquisition on 17/07/2004 (left) and the downscaled image with
the proposed method (right).

the same signature, and thus no spectral variability would be obtained. An alternative approach consists on using the posteriors
from the soft clustering, A(L), to generate the high resolution fused pixels in the evaluated MERIS pixel, Ŝ(L)

fused = A
(L)

Ê
(M),

where A
(L) contains class proportions of all the Landsat pixels in the MERIS pixel footprint P .

3. EXPERIMENTAL RESULTS

This section presents the obtained experimental results and analyzes the impact of the free parameters on the solution.

3.1. Data collection and experimental setup
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Fig. 2: Vegetation and soil spectra
of original and downscaled images.

A temporal series of Landsat TM and MERIS acquired over Barrax (Spain) site in
the frame of the ESA SPARC 2004 campaign is used to illustrate the capabilities of the
proposed method. A 32×20km area of the Landsat images acquired on July 10th, 17th,
and 26th are used. The intermediate image is not used during the downscaling process
to allow us validating the results. The free parameters of the algorithm were tuned as
follows: number of clusters K = {10, 16, 21, 24, 30}, the window size w ∈ [5, 15], and
the regularization parameter λ ∈ [0, 0.6].

3.2. Evaluation of the obtained results

To assess the obtained fusion quality we used both qualitative and quantitative distor-
tion measurements between the fused and the actual Landsat images. The qualitative
assessment consists of the inspection of typical products delivered to the nal user: the
RGB composition and the Normalized Difference Vegetation Index (NDVI). Figure 3
compares the obtained results for the target date 2004/07/17. We can observe that the

obtained and expected products are visually very similar.An additional assessment of the obtained products consists in analyz-
ing the obtained spectra for different cover classes. Figure 2 shows the interpolated and actual spectra for the labeled classes
‘bare soil’ (red lines) and ‘vegetation’ (green lines). Note that Band 4 of LANDSAT is strongly affected by water absorption
band so differences with downscaled spectra (MERIS resolution) are expected in this range.
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Fig. 4: RMSE and SSIM results as a function of the parameters w, λ, m and K .

3.3. Analysis of free parameters

The quantitative assessment was conducted using standard distortion metrics, such as the root-mean-square-error (RMSE) and
the structural similarity index (SSIM) [5]. The RMSE criterion gives an estimation of the Euclidean distortion and treats all
errors equally. We compute two version of RMSE: the RMSEM is computed at MERIS resolution, thus accounting for the
spectral distortion, while RMSETM is computed at Landsat resolution and better re ects the spatial distortion. SSIM is a
perceptual criterion for assessing image similarity, and is well-known in image coding and denoising communities as it re ects
adequately the perceived distortion by a human observer.

Figure 4 shows the obtained results for different combination of the parameters and for the used distortion metrics. When
looking at the RMSEM , it is observed that the error increases with the window size for all parameter combination. The proposed
method (λ �= 0, m �= 0) performs worse than when no regularization or abundance estimation is included. Note, however, that
results are numerically very similar. The proposed method improves when regularization and abundance estimation is included
in the case of RMSETM , thus suggesting that a much better spatial interpolation is obtained. Regularization makes the solution
almost independent on both the window size and the number of classes. This may be due to the fact that with small windows
the linear inversion is not well-posed. The same result is observed for the SSIM criterion.

4. CONCLUSIONS

Results of the proposed methodology are illustrated in ENVISAT MERIS and Landsat TM Images. These are excellent candi-
date sensors for the proposed synergistic approach since they provide medium and high spatial resolution images, respectively,
with a global coverage and a spectral overlap in the visible and near-infrared region. It is worth noting that other current and fu-
ture sensors could also be used for the same purpose. Future GMES and contributing satellite missions like EnMAP or SEOSAT
are suitable to increase the temporal resolution by means of downscaled images. In particular, the imaging spectrometers on
board the Sentinel-2 and Sentinel-3 systems would be a perfect example of a high and medium resolution instruments with
complementary temporal resolution to be combined.
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