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1. INTRODUCTION

This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data
analysis. The so-called Hilbert-Schmidt IndependenceCriterion (HSIC) is a kernel method for evaluating statistical dependence.
HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding
Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We
exploit the capabilities of HSIC to explain nonlinear dependences in several remote sensing problems, such as temperature
estimation or chlorophyll concentration prediction from spectra. Results show that, when the relationship between random
variables is nonlinear or very noisy, the HSIC criterion outperforms other standard methods, such as the linear correlation or
multi-information.

2. MEASURING INDEPENDENCE WITH KERNELS

This section presents a criterion for measuring general forms of dependence between random variables. We rst start with
a simple example of linear dependence to motivate the need for measuring nonlinear dependence. Then the HSIC criterion
formulation is presented.

2.1. Linear dependence between random variables

Let us consider two spaces X ⊆ Rdx and Y ⊆ Rdy , on which we jointly sample observation pairs (x,y) from distribution
Pxy. The covariance matrix is de ned as Cxy = Exy(xy�) − Ex(x)Ey(y�), where Exy is the expectation with respect to
Pxy, Ex is the expectation with respect to the marginal distribution Px, and y� is the transpose of y. The covariance matrix
encodes all second order dependences between the random variables. A statistic that summarizes the content of this matrix is
its Hilbert-Schmidt norm. The square of this norm is equivalent to the squared sum of its eigenvalues λi, ‖Cxy‖

2
HS =

∑
i λ2

i .
This quantity is zero if and only if there exists no rst order dependence between x and y. Note that the Hilbert-Schmidt norm
is limited to the detection of rst order relations, and thus more complex (higher-order effects) cannot be captured.

2.2. Measuring dependence with kernels

The nonlinear extension of the notion of covariance was proposed in [1]. Essentially, let us de ne a (possibly non-linear)
mapping φ : X → F such that the inner product between features is given by a positive de nite (p.d.) kernel function
kx(x,x′) = 〈φ(x),φ(x′)〉. The feature space F has the structure of a reproducing kernel Hilbert space (RKHS). Let us
now denote another feature map ψ : Y → G with associated p.d. kernel function ky(y,y′) = 〈ψ(x),ψ(x′)〉. Then, it is
possible to de ne a cross-covariance operator between these feature maps, similarly to the standard (linear) covariance matrix.
The cross-covariance operator is a linear operator Cxy : G → F such that Cxy = Exy[(φ(x) − μx)(ψ(y) − μy)�], where
μx = Ex[φ(x)], μy = Ey[ψ(y)], and uv� denotes the linear operator uv� : G → F , w �→ u〈v,w〉. See more details
in [2, 3]. The squared norm of the cross-covariance operator, ‖Cxy‖

2
HS, is called the Hilbert-Schmidt Independence Criterion
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(HSIC) and can be expressed in terms of kernels [1]. Given a sample dataset Z = {(x1,y1), . . . , (xm,ym)} of size m drawn
from Pxy, an empirical estimator of HSIC is [1]:

HSIC(F ,G, Pxy) =
1

m2
Tr(KxHKyH), (1)

where Tr is the trace (the sum of the diagonal entries), Kx, Ky are the kernel matrices for the (possibly multidimensional)
random variables x and y, respectively, and Hij = δij −

1
m

centres the variables in F and G. Here δ represents the Kronecker
symbol, where δi,j = 1 if i = j, and zero otherwise.

Note that the actual HSIC is the Hilbert-Schmidt norm of an operator mapping between potentially in nite dimensional
spaces, and thus would give rise to an in nitely large matrix. However, due to the ‘kernelization’, the empirical HSIC only
depends on computable matrices of size m×m.

In [1], several statistical tests of independence based on the empirical HSIC estimator (1) were proposed. The test should
discern between the null hypothesis H0 : Pxy = PxPy (factorization means independence), and the alternative hypothesis
H1 : Pxy �= PxPy. This is done by comparing the test statistic HSIC with a given threshold. Among the possibilities to de ne
such a threshold over the HSIC estimate, a reasonable one is to approximate the null distribution as a two-parameter gamma
distribution, ĤSIC ∼ xa−1e−x/b

mbaΓ(a) , where a = E[ĤSIC]2/V[ĤSIC] and b = V[ĤSIC]/E[ĤSIC]. Note that to compute the test

quantile, we need empirical estimates of both E[ĤSIC] and V[ĤSIC], whose detailed expressions can be found in [1] (Theorems
3 and 4). Then, the threshold θ is computed through the inverse cumulative density function (cdf) of the 1 − α value, where
α is the adopted signi cance level (typically, α = 0.05 or α = 0.01). Two random variables are then considered dependent if
ĤSIC ≥ θ, and independent otherwise.

3. EXPERIMENTAL RESULTS

This section is devoted to the design and application of different statistical dependence approaches based on HSIC to establish
the dependence between biophysical variables. The population HSIC is zero at independence, so the sample is unlikely to be
independent when the empirical HSIC is large. The signi cance of the result is tested through the HSIC threshold, which is a
user-speci ed quantile of the empirical HSIC distribution at independence. When he empirical HSIC exceeds this threshold,
ĤSIC ≥ θ, we reject the independence hypothesis.

3.1. Temperature estimation

We consider the case of temperature estimation from thermal infrared (TIR) remotely sensed data. In this scenario,
land/sea surface temperature (Ts) and emissivity (ε) are the two main geo-biophysical variables to be retrieved from
TIR data, since most of the energy detected by the sensor in this spectral region is directly emitted by the land surface.

Table 1. Dependence relations tested with the esti-
mated HSIC and its threshold θ, mutual information,
I , and the Pearson’s correlation coef cient ρ (and
the corresponding p-value) for a signi cance level of
α = 0.05.

Relation HSIC θ I ρ p-value

T − Ts 82.34 0.81 0.4826 0.994 0
T −W 56.67 0.66 0.1494 0.748 0
T − ε 0.60 0.55 0.0013 0.056 0.23
Ts − ε 0.34 0.55 0.0009 0.009 0.46
W − ε 0.29 0.62 0.0004 0.016 0.36

Both quantities, Ts and ε, are coupled and constitute a typical
problem in remote sensing referred as to the “temperature and emis-
sivity separation problem”. On the one hand, models for estimat-
ing land temperature, Ts, typically involve simple parameterizations
of at-sensor brightness temperatures, T , the mean and/or differential
emissivities (ε̄ and Δε), and the total atmospheric water vapor con-
tent, W . Knowing the surface emissivities and the water vapor is
dif cult as it involves complex radiative inversion models [4]. On the
other hand, models for estimating the ε have been devised, either by
retrieving ε only from thermal infrared (TIR) data, T , or from visible
near-infrared (VNIR) data [5].

We evaluate the capabilities of the HSIC criterion to assess the
dependence and interaction between the involved variables in the pro-
cess, i.e. W , T , ε and Ts. From physical knowledge, it is assumed

that Ts and ε depend of W and T , and that improved models for temperature estimation involve estimating the surface emis-
sivities as well. In addition, it is also known that spectral emissivity is nearly independent of T for most common materials
and temperature of the terrestrial environment1. To assess such relations, we consider synthetic data simulating ASTER sensor

1Only a small marginal dependence is typically observed for high temperature values.



conditions [4]. We included in the data a total amount of 101 ε spectra for natural surfaces extracted from the ASTER spectral
library and 61 atmospheric pro les extracted from the Thermodynamic Initial Guess Retrieval database. Simulations were per-
formed at 0o so no angular effects due to the wide swath angle of low-resolution sensors are considered. By taking into account
the ve different T acquired values, the 61 atmospheric pro les, and the 108 emissivity spectra, a total of 6588 data points is
available.

Fig. 1. Identi ed dependence
graph between variables by
HSIC. Thick (dashed) lines
represent strong (weak) vari-
able dependence.

The dependence graph between the considered variables (W , T , Ts, ε) was assessed esti-
mating both the HSIC and the Pearson’s correlation coef cientρ between all pairwise variable
combinations, and the multi-information, I estimated with the method in [6], which does not
explicitly estimate the densities. Note, however, that even though the mutual information is
an excellent dependence measure, its nite sample empirical estimate is not easy, especially
for continuous variables as in this case.

We randomly selected 500 samples from the dataset, and show the averaged results for 10
realizations in Table 1. In all cases, we xed the signi cance value at α = 0.05. It can be
noticed that all methods detect stronger dependence for T -Ts and T -W , as expected. More
interesting is the case of the relation between the at-sensor brightness temperatures, T and
the emissivity ε: HSIC identi es a dependence, yet marginally, while the other methods yield
a low multi-information value, as well as very low (but not statistically signi cant) linear
correlation. This result justi es the need of identifying and exploiting nonlinear relations in
emissivity estimation models, as done elsewhere [4]. Finally, HSIC succeeds in identifying
independence between emissivity and Ts or W . In these particular cases, low correlations are
obtained but these are not statistically signi cant, p > α. The identi ed dependence graph by

the proposed HSIC method is shown in Fig. 1. Note that the expected dependences have been correctly identi ed from data.

3.2. Oceanic Chlorophyll-a concentration estimation

The estimation of oceanic chlorophyll concentration from radiance remote sensing data allows us to assess the global ocean
phytoplankton mass. Accurate prediction methods lead to understanding and modeling ocean color and dynamics, and to better
describe the relationship between the remote sensing re ectance and the backscattering-to-absorption ratio. In this context, we
aim at analyzing the nonlinear statistical dependency between the re ectance channels and the measured Chl-a concentration.

For this purpose, we used the SeaBAM dataset [7], which gathers 919 in-situ measurements of chlorophyll concentration
around the United States and Europe related to ve different multispectral remote sensing re ectance bands that correspond to
some of the SeaWiFS wavelengths (412, 443, 490, 510 and 555 nm). The chlorophyll concentration values span an interval
between 0.019 and 32.787 mg/m3.

We analyzed the pairwise dependencies among all variables (spectral radiances and the in situ Chlorophyll-a concentration
measurement). We used all available data and tested dependencies with HSIC (and the corresponding estimated threshold
value), mutual information, I , and the Pearson’s correlation coef cient ρ (and the corresponding p-value) for a signi cance
level of α = 0.05. Results are summarized in Fig. 2. Looking at the correlation coef cient dependency matrix, a strong (linear)
correlation is observed between spectral re ectance at 555 nm and chlorophyll concentration, but also among re ectances
at 412, 443, and 490 nm. These relations are not used in the literature for developing bio-optical models of chlorophyll
concentration estimation, which typically focus on ratios between re ectances at 490 nm or 510 nm versus the 555 nm band.

Pearson’s ρ Mutual info., I HSIC
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Fig. 2. Pairwise dependency relations between spectral channels and Chlorophyll-a concentration tested with different methods.



The correlation coef cient successfully identi es these relations, and goes in line with the most widely used OC4 model [7].
The mutual information con rms some of these relations, particularly between pairs 412-443 nm and 490-443 nm. Concerning
the HSIC dependency estimations, one can observe that most of the channels (except 510 nm) have a high dependency on Chl-a
concentration. However, some dependencies are more evident: the two bands depending most on Chl-a are at 443 nm and 412
nm, which matches the parameterizations considered in Morel-1 and Morel-3 bio-optical models, and the more advanced OC4
model. This may be due to the good signal-to-noise ratios of these bands. It is also shown that channels at 443 and 412 nm are
tightly dependent, which could constitute a masking effect to be tested, probably due to the high noise level in those speci c
bands.

4. CONCLUSIONS

This paper presented a kernel method for remote sensing variable nonlinear dependence estimation. The method has very good
theoretical and practical properties and can discover nonlinear dependencies between random variables when the space is not
suf ciently sampled or in noisy situations. More examples and theoretical analysis will be given at the time of the conference.
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