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1. INTRODUCTION

Appropriate backscattered signal stochastic models are essential for correctly segmenting high-resolution Polarimetric SAR

(POLSAR) images. Modelling using multivariate, centered, circular Gaussian random process is no longer acceptable for the

new high quality images, since the reduced dimensions of the resolution cells increase the heterogeneity of the observed scene

and obsoletes the Gaussian polarimetric model. Examples of advanced, non-Gaussian polarimetric stochastic models are the

SIRV model and various submodels (e.g. the KummerU model [1]).

During classification of image pixels in POLSAR, each pixel receive the label of a class. This is illustrated in Fig. 1 [1]

(classes are coded with colours). The segmentation algorithm essentially relies on the underlying stochastic model assumed

for the backscattered radar signal (e.g. Gaussian, SIRV/KummerU, etc.). As such, homogeneity of determined classes is based

on the statistical distribution of POLSAR image pixels, and the physical characteristics of the objects in the image are not

considered at this stage.

In order to complement the stochastically-based pixel classification, physical characterization may be also used. Since the

backscattered signal is intrinsically linked with the physical characteristics of the objects in the image, valuable information

may be extracted therefrom. The paper focus is to propose a new physical characterization of the scattering target, inspired by

the Blind Sources Separation techniques.

(a) (b) (c) (d)

Fig. 1. Classification results for the X-band RAMSES data over the Toulouse test-site (700 × 700 pixels) : (a) Colored

composition of the target vector [k]1-[k]3-[k]2, (b) Wishart criterion, (c) SIRV criterion, (d) KummerU criterion
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2. PHYSICAL CHARACTERIZATION

Efforts have been made in direction of characterizing the physical structure of the objects observed by a radar from their

polarimetric echos. Several such decompositions have been proposed: the Huynen decomposition [2], the H/α/A decomposition

[3], the Target Scattering Vector Model (TSVM) decomposition [4], etc. The fundamental idea of those decomposition is that

each elementar reflector (surface, sphere, dihedral, . . . ) has a particular backscattering mechanism and that each target may be

described as a superposition of such elementary reflectors.

2.1. H/α/A and TSVM decompositions

In the monostatic case (SHV = SV H ), the scattering vector is defined as a vectorization of the scattering matrix S:

�kP =
1√
2
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⎤
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The coherency matrix T is defined as:

T = E
[
�kP · �k†

P

]
(2)

Many incoherent target decompositions (ICTD) theorems have been proposed in the litterature to compute polarimetric pa-

rameters from the coherency matrix T. The H/α/A and TSVM-ICTD decompositions extract a first set of parameters computed

from the eigenvalues of T, and a second set of parameters which is computed from the eigenvectors of T, using either the α/β

model (for the H/α/A decomposition) [3] or the TSVM model [4].

Since T is hermitian and positive semidefinite, it is possible to write:

T = VΣV† (3)

where Σ is the diagonal matrix of the eigenvalues of T (arranged in decreasing order), while V is the complex matrix whose

columns are the corresponding eigenvectors of T.

Three roll-invariant parameters can be extracted from the eigenvalues of T, namely the span: span =
∑3

i=1 λi; the entropy:

H =
∑3

i=1 −pi log3 pi where the pseudoprobabilities pi are given by pi = λiP3
j=1 λj

and the anisotropy: A = λ2−λ3
λ2+λ3

= p2−p3
p2+p3

.

The parameters computed from the eigenvectors vary according to the retained model.

In the α/β model [3], each eigenvector ki of the coherence matrix T is parametrized using five angles (αi, βi, γi, δi, θi):

ki = ejθi
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The TSVM, proposed by Touzi in 2007, consists in the projection in the Pauli basis of the scattering matrix con-diagonalized

by the Takagi method (see [4] for details). It leads:
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The rotation angle ψ is used for the subtraction of the target orientation from the target vector. τm is the target helicity, it



characterizes the symmetry of the target. αs and Φαs are the symmetric scattering type magnitude and phase. They are derived

from the coneigenvalues μ1 and μ2 of the scattering matrix S by:

tan(αs) ejΦαs =
μ1 − μ2

μ1 + μ2
. (6)

For the α/β model, only αi angle is roll-invariant whereas for the TSVM three parameters, namley αs, Φαs
and τm, are

roll-invariant (independent of ψ).

3. BLIND SOURCES SEPARATION TECHNIQUES

An alternative to the physical decompositions based on the covariance matrix is to use the techniques dedicated for blind source

separation (BSS). In its simplest form, the latter assumes that a number of sensor record different linear combinations of an

equal number of sources. Making use of relative weak hypothesis on the original sources (e.g. the statistical independence

of the random sources), the BSS techniques attempt to retrieve the coefficients of the linear combinations (e.g. the mixing

matrices) and, correspondly, the signals transmitted by the sources.

Under the hypothesis that POLSAR image pixels are realizations of a multivariate (three-dimensional) stochastic process

(for example, the KummerU model [1]), whose components are linear combinations of one-dimensional sources, the scattering

vectors may be written as:
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where A is the 3 × 3 mixing matrix.

Under the BSS model, the matrix A is retrieved in such way that sources represented by ξ, η, ζ are independent (also known

as the Independent Component Analysis or ICA). One algorithm that may be used to retrieve the matrix A and the independent

stochastic sources ξ, η, ζ is the FastICA method [5].

Based on (7), the coherence matrix T = E
[
�kP · �k†

P

]
may be now written as:
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This is an alternative writing for (3), which is the basis on which the H/α/A and the TSVM decompositions rely on. Since

variables ξ, η, ζ are independent, their correlation matrix is diagonal, which further enhance the similarity with (3).

4. FUTURE WORK AND PROSPECTED RESULTS

This work is in progress. Preliminary results are presented in Fig. 2, where intensities of the independent components resulting

from (7) are shown against the original components of the original target vector. Note that the ξ, η, ζ planes bear no more

information about their coupling, as this information is now completely transferred to the mixing matrix of each class (a

number of 6 classes [1] has been identified).

The final paper will propose alternative physical decompositions, following the general lines of the H/α/A and the TSVM

decompositions, but relying on (8) instead of (3). A common framework for expressing the H/α/A and the TSVM decom-

positions will also be studied, exploiting the fact that the stochastic independence is an alternative (and stronger) hypothesis

than decorrelation. The decorrelation is achieved through various techniques, for example the Principal Component Analysis,



(a) (b)

Fig. 2. Classification results for the X-band RAMSES data over the Toulouse test-site (700 × 700 pixels) : (a) Colored

composition of the original target vector components [k]1-[k]3-[k]2 in logarithmic representation, (b) colored composition of

the independent components ξ-ζ-η in logarithmic representation

strongly linked with decomposition (3). An extensive comparison between the H/α/A, TSVM and the newly-proposed ICA

based decomposition, under the new common framework, will also be included.
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