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ABSTRACT

We propose a new method, based on level sets, to detect aircraft on low resolution infrared images. Aircraft corre-

spond to hot temperatures at the sensor level. Hence it is natural to rely on a test that considers the hottest pixels in

the sensed image. If these pixels are close, they are likely to come from a target (i.e., an aircraft); otherwise they

belong to the clutter. Instead of manually testing the neighborhood of each hot pixel, we use level sets; this is the first

contribution of the paper (corresponding to eq. 2). The other contribution is the calibration of the resulting test. The

method is implemented and tested over a database containing 45 604 simulated aircraft images and provides 98.5%
of correct detections.

Index Terms— infrared surveillance, aircraft detection, image processing, image resolution.

1. INTRODUCTION

Detecting objects using only a single low-resolution image is usually a difficult task. Preferably, one circumvents

the difficulty by using a bunch of such images and recover the details lacking in each image taken separately. In

the context of aircraft detection, such methods are known as “Track Before Detect” (TBD) [1, 2]. Here we are

going to deal with a specific problem, where the clutter did not completely destroy the image geometry. So we were

able, using appropriate tools, to work with a single image and yet obtain good detection results. To the best of our

knowledge, there are few work in this direction dealing with aircraft detection. Let us mention [3] that designed an

algorithm that can adapt to various clutters and targets but first needs a learning step.

French Aerospace Lab ONERA designed an infrared sensor simulator along with an aircraft infrared signature

simulator named CRIRA. This sensor’s aim is to detect aircraft flying low. In order to be useful the sensor should

be able to detect aircraft far ahead. Unfortunately, there are some physical obstacles that make the sensing quite

intricate. First, the device has to be manheld, so its resolution has to be coarse (64 × 64 pixels), otherwise it would

be too cumbersome. Then, at such distances, atmospheric absorption has an important impact on the sensed image.

And finally, the sensed image depends on several unkown parameters such as the flight parameters of the aircraft,

the presence of clouds, etc. Fig. 1 gives a hint of the kind of images we are going to cope with. In Fig. 1 (a), one can

see a bright area in the middle, the aircraft is easy to spot. The corresponding histogram is shown in Fig. 1 (b): most

of the pixels are cold (low values, less than .1) and few are hot (the max is about 1.0). On such images, looking at

the hottest pixel provides a strong support for detection. However, some images are more challenging, like the one

pictured in Fig. 1 (c): it is essentially white noise plus a couple of barely hot pixels (approx. .2).

The authors are grateful to ONERA for funding this research and providing the data.
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Fig. 1. (a): Easy image, the aircraft yields a hot spot in the middle of the image. (b): Histogram of image a. Nearly

all pixels are at the noise level, a few ones are clearly above. (c): Challenging image, the aircraft is barely visible,

two pixels out of 4096 are hotter than noise. (d): Histogram of image c.

2. STATISTICAL FRAMEWORK

2.1. Model and Notations

An infrared image is an n × n matrix ϕ : [1, n]2 → R where n is the resolution of the sensor (n = 64 in our case).

It has already been seen that aircraft infrared images can vary widely. This is why modelling the infrared

signature of an aircraft is a complicated problem. We circumvent the difficulty by modelling the absence of aircraft

instead. Under clear sky assumption, white gaussian noise is a natural candidate. This is the null hypothesis, denoted

by H0 in the sequel. Under H0,

ϕ ∼ N (0, σ2In2) (1)

after having stacked all the n2 entries of ϕ in a single vector. The sensor is calibrated meaning that σ is known
(σ = .01 in our case) but the following will not use this information in order to adapt to uncalibrated sensors. The

alternative hypothesis H1 is simply everything but H0.

Of course, as H1 is left unspecified, we cannot apply standard likelihood ratio tests. We have to design the test

statistics T (ϕ) so that it reflects our knowledge of the target. For instance, if the only thing we knew was the target

to be hotter than the background, a straightforward idea would be to put T (ϕ) = max(ϕ). Then, we could calibrate

the threshold on T (ϕ) using the test distribution under H0 and the probability of false alarm.

This kind of test gives good results on easy images as Fig. 1 (a), but would fail on difficult images such as the

one represented in Fig. 1 (c). Fortunately, we also know that hot pixels coming from an aircraft infrared signature

should also be spatially close.

2.2. Level Sets

Level sets have long proved their usefulness in image processing [4, 5, 6]. Here they provide a handy tool for testing

spatial proximity of hot pixels. Let us recall some basic definitions (refer, for instance, to [7] for details). Let ϕ be

a discrete image and ϕ̃ its bilinear interpolation (many other interpolation schemes could also be used as well). An

upper level set for ϕ is a connected component (cc) of Sλ = {(x, y) : ϕ̃(x, y) ≥ λ}. Since we will not deal with

lower level sets, we omit the qualifier “upper”. Fig. 2 compares two level sets with the same level λ extracted from

Fig 1 (a) and (c).

Finally, the test statistics is the maximum area of all level sets with level λ:

Tλ(ϕ) = max
s∈cc(Sλ)

|s| , (2)
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Fig. 2. Level sets corresponding to level λ = .38 for images Fig. 1 (a) and (c).

where |s| denotes the area of set s. The idea underpinning this statistics family is the following. If there is no

aircraft, gaussian white noise should yield level sets with small area when λ � σ (this is the principle used by the

morphological grain filter [8]). If there is indeed an aircraft, either atmospheric absorption has been small and has

not eroded the aircraft geometric structure: in this case there is a large hot zone somewhere in the image, hence a

level set with large area. Or the atmospheric absorption has left none but a very few pixels slightly above the noise

level: in this case, these pixels should be close enough for a small level set to remain.

3. THE PROPOSED ALGORITHM

In order to use the statistics Tλ (eq. 2) one needs to calibrate the test under H0 (eq. 1) that is, determine its distribution

under H0 hypothesis. For T (ϕ) = max(ϕ) it can be carried over analytically using extreme value theory [9]:

√
2 log(n2)

max(ϕ)
σ

− 2 log(n2) − 1
2
(log(4π) + log log(n2)) → ξ ,

where ξ has a Gumbel distribution function exp(− exp(−x)) and the convergence takes place in distribution. But

for Tλ such asymptotic results are difficult to obtain. This is why we resorted to Monte-Carlo simulation to calibrate

Tλ. Fig. 3 illustrates the various pdf found for various values of λ.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Max Area

pr
ob

. d
en

s.

 

 
f(0.0128)
f(0.0164)
f(0.0232)
f(0.0309)

Fig. 3. Monte-Carlo estimation of pdf corresponding to Tλ(ϕ) under H0 for various values of λ. We used λ1 = q.95,

λ2 = q.95, λ3 = q.99, λ4 = q.999, where qα is the αth quantile of a centered gaussian distribution with variance σ2.

Once the level λ chosen, the desired probability of false alarm ε fixed, the previous Monte-Carlo simulation gives



the corresponding threshold tε. The detection method is straightforward: if Tλ(ϕ) is greater than tε, then reject H0

and output the corresponding level set; otherwise accept H0.

In all experiments we chose ε = 10−3. We then estimate the noise standard deviation σ̂ using a robust estimator:

discard 10% of extremes pixels, and use the standard estimate on the remaining pixels. Then we chose λ = 2σ̂
according to several tests made on our database. It is a reasonable values since, according to Fig. 3, level sets having

area above 1 pixels are very unlikely under H0 hypothesis.

We ran this algorithm on our infrared signatures database made of 45 604 aircraft images simulated under a

wide range of parameters value (aircraft angular parameters, time of the day, weather, etc.). This database is mainly

composed of “easy” images such as Fig. 1 (a). but a small proportion of images is very challenging as the one of

Fig. 1 (c), and some are even impossible to detect, being completely black up to the thermal noise. We obtained

98.5% of correct detections, while ensuring that, when ran on pure white noise images the probability of false alarm

was below 0.1%. Fig. 2 actually shows our detection result on the corresponding images.

4. CONCLUSION

We proposed a new method, based on level sets, to detect aircraft on low resolution infrared images, implemented

it, and tested it over a database of 45 604 simulated aircraft images (while enforcing the probability of false alarm

below a fixed level, 10E-3 in our experiments). This method gave good results on the database: 98.5% of correct

detections; among the 1.5% of miss detection, some images (0.9%) being completely black (up to the thermal noise)

due to massive atmospheric absorption. For easy detection the method gives an interesting output, namely the region

of interest with accurate contour around the aircraft. This puts the user in good position to further processing:

classification, parameter estimation, etc.

A weakness of the method is to rely on white noise assumption for the background model. Ongoing work, that

will be the subject of a forthcoming paper, should allow us to relax this restrictive hypothesis and approximate the

level sets area distribution for any Gaussian Field provided it is regular enough.
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