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1. INTRODUCTION 
 
Benefits of urban trees range from carbon sequestration, alleviation of the urban heat island effect, savings in 

energy consumption, appreciation of real estate, to the emotional effect on citizens [1-2]. Municipalities need 

detailed inventories of urban trees to quantify those benefits, determine the return of investment of forestry 

practices and to set plans for greener cities. Although remote sensing provides valuable information for vegetation 

mapping, it is difficult to semi-automatically derive information on urban trees from images due to complexity of 

the urban space, spectral variability of tree species and limited spectral and spatial resolution of satellite images. 

The spatial resolution of present spaceborne very high resolution (VHR) sensors still does not permit the 

generation of individual tree inventories [3], as young trees may have a crown diameter less than 5 m whereas the 

fine spatial resolution is in the order of 2 m and 0.5 m for multispectral and panchromatic mode respectively.    

Hence, a solution is needed to better exploit the information provided by spectral and panchromatic modes of 

VHR datasets to facilitate identification of urban trees. Image fusion techniques, which synthesize a multispectral 

image with a finer spatial resolution panchromatic image, may introduce spectral and geometrical distortions [4]. 

In this study we propose a super-resolution mapping (SRM) method based on Markov random fields (MRF) for 

identification and delineation of tree crown objects in urban areas by combining the multispectral and 

panchromatic information of VHR imagery and by modeling the spatial dependence of neighboring image pixels.  

 
2. METHODS 

 
SRM is a novel land cover classification technique which produces a hard classification map of a finer resolution 

than that of an input multi spectral image. In [5], SRM approaches are divided into two categories: regression or 

learning algorithms, which include geostatistical models, and spatial optimization algorithms, such as pixel 

swapping, simulated annealing (SA) and Hopfield neural network. So far SRM has been used mainly in 

experimental datasets or particular study cases. Some studies can be found on SRM of vegetation [6-7] but so far 

little has been reported on urban tree inventories.    

In [8] an alternative to model spatial dependence in super-resolution maps was described, considering an MRF 

with SA to produce super resolved maps after initial identification of class fractions at a pixel level. In [9], this 



has been further explored and evaluated for synthetic images under different class separability conditions. In this 

study we extend the SRM method of [8-9] to include the fine resolution panchromatic band, usually available in 

VHR images. We consider the classification of a multispectral remote sensing image y that consists of Nb spectral 

bands with spatial resolution noted as R with pixel locations bj  B where B is a 21 MM  pixel matrix. The 

panchromatic image is noted as p with finer spatial resolution r,  r < R. The super-resolution map c is defined on 

the set of pixels A and covers the same extent on the ground as y and p with spatial resolution r. The scale factor 

S=R/r is an integer for common VHR images. Hence each pixel bj corresponds to the area on the ground covered 

by S2 finer resolution pixels aj|i, i=1,…,S2.              

We further assume the existence of a multispectral image x defined on the set of pixels A with Nb multi-spectral 

bands and fine spatial resolution r. Image x is not observed directly while images y and p are considered as spatial 

and spectral degraded observations of x respectively. Furthermore, we assume that each pixel in the image x can 

be assigned to a unique class: c(aj|i)= , with  {tree, background}. The relationship between y and x, and p and 

x are established by a degradation model as: 

 

 

Prior and conditional probabilities are specified by energy functions [10]. Thus, we formulate the prior probability 

of the SR map c, and the posterior probability to observe the super-resolution map c given y and p as: 

; , 

respectively. According to the Gibbs equivalence theorem, the SR map c corresponds to the minimum of the 

posterior energy, which is defined by: 

, 

where , 0    1,  is the smoothness parameter controlling the contribution of prior and likelihood terms in the 

MRF model. The prior energy U(c) is modeled as the sum of pair-site interactions for a neighboring window W 

defined as in [9]. For the likelihood model, a parameter pan is introduced to control the contribution of the 

panchromatic and multispectral terms in the model as follows:  

 

where 0   pan  1. We model these energy functions with the normal distributions for the pixels of each class k in 

the panchromatic and multispectral images p,y. This requires the user to specify the mean and covariance matrix 

for each class, for example by defining a training set. 

 



3. EXPERIMENTS AND RESULTS 
 

For the study we selected two rectangular areas of a Quickbird image covering a residential area in The 

Netherlands. These areas comprise groups of urban trees with crown diameters ranging between 3 and 15 m 

surrounded by impervious surface and vegetation (Figure 1-2 top left). We compared the performance of the SRM 

classification (Figure 1-2 bottom right) with conventional maximum likelihood classification (MLC) of the 2.4-m 

multispectral bands (Figure 1-2 bottom left)  and of the image obtained by fusing multispectral and panchromatic 

bands through the High Pass Filter (HPF) method (Figure 1-2 bottom center).   

For ML and SRM classifications training areas were selected over the full extent of the Quickbird image for 

impervious areas, grassland, shadow, and tree crown categories.  At least 350 pixels were collected for each class 

in the panchromatic and multispectral bands and from these mean and covariance matrix were calculated.  

The SRM energy function was minimized by simulated annealing with an exponential cooling schedule as in [8]. 

The initial point for SRM was obtained from the ML classification of the multispectral bands. MRF was 

implemented in a C++ program and model parameters were optimized on a trial and error basis against user and 

producer accuracy. We compared per-pixel accuracy of tree identification results with a manually digitized 

reference image assisted with ground survey (Table 1).  

 
5. CONCLUSIONS  

 
The study shows the use of the multispectral, panchromatic information and spatial optimization via MRF to 

identify individual urban trees in VHR images.  The SRM method produced better results than conventional MLC 

over both the multispectral and the HPF enhanced image when tested in two areas of a Quickbird image. In future 

work we intend to validate the model for larger areas, incorporate texture measures in the SRM model and 

perform object-based accuracy assessment of the SRM results. 

 

Figure 1. Area 1. Top: (left) Panchromatic band; (center) multispectral bands; (right) reference image;          
Bottom: (left) MLC multispectral image; (center) MLC HPF image; (right) SRM  



 

Figure 2. Area 2. Top: (left) Panchromatic band; (center) multispectral bands; (right) reference image; 
Bottom: (left) MLC multispectral image; (center) MLC HPF image; (right) SRM 

Table 1. User and Producer accuracy of tree crown detection in test sites.  
 Area 1 Area 2 
 User Producer  User  Producer  

MLC MS 85.2 38.5 97.9 17.2 
MLC HPF 93.3 48.3 41.7 18.0 

SRM MS+Pan 81.1 57.6 79.9 77.0 
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