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1. INTRODUCTION

The amount of atmospheric water vapor and the corresponding temporal and spatial variation is of major interest for meteorol-
ogy and climate research. Consistent time series of integrated precipitable water vapor (IPWV) are therefore valuable data sets
for these research areas. Since variations in the amount of atmospheric water vapor might have a connection to anthropogeni-
cally in uenced climate change scenarios, the observation of IPWV variations is also of major interest to society.

A number of different observation techniques are sensitive to the amount of atmospheric water vapor and thus can be used
to monitor IPWV variations. For example, more than a decade of radiosonde data have been used to derive IPWV trends
[1]. Long-term trends in the IPWV have also been derived from more than 15 years of ground based microwave radiometry
observations [2]. In recent years space geodetic techniques have been used to derive trends in atmospheric water vapor. Both,
results based on geodetic VLBI data analysis, e.g. [3], [4], and also GPS data analysis, e.g. [5] [6], [7], [8], [9], have been
presented.

Since there are technique speci c advantages and disadvantages in terms of instrumental stability, measurement uncertainty,
temporal and spatial sampling, a comparison of the results derived from co-located sensors is of interest. We focus on the
data obtained with different co-located techniques operated at the Onsala Space Observatory at the Swedish west coast. The
observatory hosts equipment for both geodetic VLBI and microwave radiometry and data for more than two decades have been
collected with these two techniques. The observatory also is equipped with instrumentation for GNSS observations and GNSS-
data have been collected for more than a decade. In about 37 km distance to the observatory radiosondes are launched at the
Gothenburg-Landvetter Airport since more than two decades.

To investigate trends in the amount of atmospheric water vapor we concentrate on long time series and thus focus on the
results for IPWV derived from the three techniques that have observational history of more than two decades.

2. OBSERVATIONS AND ANALYSIS

The Onsala Space Observatory is actively contributing to high quality geodetic VLBI observations since the 80’ies of the last
century [10]. Usually 20 to 30 individual VLBI sessions are performed per year, and additionally a number of continuous
campaigns have been observed. However, the observing sessions are unfortunately not on regular intervals and thus the amount
of atmospheric water vapor is not sampled regularly with VLBI. On the other hand does the VLBI techniques promise long
term stability due to its stable instrumentation.

A global VLBI data set was analyzed covering January 1984 to the end of 2008 using the CALC/SOLVE software [11].
Radio source positions, station positions and velocities were estimated as global parameters, and earth rotation and orientation
parameters as daily parameters. The necessary no-net-translation and no-net-rotation constraints were applied. Clock parame-
ters and zenith wet delay (ZWD) parameters were estimated as piece-wise linear functions with a 1 h resolution, and horizontal
atmospheric gradients as piece-wise linear functions with a 3 h resolution. Solid earth tides, ocean loading and atmospheric
loading were applied in the analysis. An elevation cutoff angle of 5 degrees and the NMF mapping functions [12] were used.
The resulting ZWD values were converted to IPWV applying the formalism described in [13].

A water vapor radiometer (WVR) is used at the Onsala Space Observatory to perform mircrowave radiometry measurements
since 1980 [14]. It is a two channel instrument (21.0 and 31.4 GHz) with horn antennas with an opening angle of 6 degrees.
Before 1993 the instrument was mainly operated only during VLBI observations. After that it is used almost continuously in



a so-called sky-mapping mode. There were several repair and upgrade periods in 1991/1992, 2003 and 2006/2007 when the
instrument unfortunately was not operating.

The acquired data were analyzed using the in house developed RadGrad software and zenith wet delays and gradients were
estimated with a temporal resolution of 30 minutes. The ZWD results were then converted to IPWV as described before.

Radiosondes (RS) are a traditional measurement device for upper air observations in meteorology. The closest radio launch
station to the Onsala Space Observatory is at the Gothenburg-Landvetter airport where the Swedish Meteorological and Hydro-
logical Institute (SMHI) launches radiosondes. These measurements have a long and continuous observation history, however
the launching interval has varied over the years between 6, 12 and 24 hours and also the type of radiosondes has changed over
the years. Before March 1986 the radiosonde type Vaisala RS18 was in use and since December 1985 the radiosonde type
Vaisala RS80 is in use. Both types were used in parallel during an overlapping period of four months.

Radiosonde data are available as atmospheric pro les of pressure, temperature, and humidity. The data were analyzed using
the in house developed CalcRS software and nally IPWV derived. The accuracies are assumed to be 5% of the absolute value,
based on measurement accuracies of the sensors used in the radiosondes [15].

3. COMPARISON OF IPWV TIME SERIES

Time series of IPWV derived from VLBI, WVR and RS data analysis are presented in Fig. 1. We concentrate on the period
1984 to the end of 2005 where all three techniques have observations. The RS derived IPWV time series is most regularly
sampled, while both the VLBI and WVR derived IPWV time series have some gaps. Seasonal signatures are clearly visible in
all three time series and a seasonal model that includes six parameters (offset, rate, cosine and sine amplitudes of an annual and
a semi-annual period) can be tted independently to each data set.

Since the original data have different sampling we also synchronized the data sets pairwise. Scatterplots of the pairwise
synchronized data are shown in Fig.2. The data sets are highly correlated with correlation coef cients above 0.95. Again, the
seasonal model was tted to the synchronized data sets. Preliminary results are shown in Table 1.

Fig. 1. Time series of integrated precipitable water vapor (IPWV) as determined from geodetic VLBI data observed at Onsala
(VLBI, top) microwave radiometry at Onsala (WVR, middle) and radiosondes at Gothenburg-Landvetter (RS, bottom).
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Fig. 2. Scatterplots of synchronized IPWV: WVR versus VLBI (left), RS versus VLBI (middle) and RS versus WVR (right).
The correlation coef cients are 0.97, 0.95 and 0.96, respectively.

Table 1. Preliminary results for linear IPWV trends inferred from geodetic VLBI and microwave radiometer (WVR) data from
Onsala, and radiosonde (RS) data from Gotheburg-Landvetter airport. The uncertainties represent formal errors and are too
optimistic.

Data source Data points IPWV trend (kg/m2/decade)

unsynchronized (all) data Jan. 1984 – Dec. 2005

VLBI 11466 0.44 ± 0.03
WVR 268466 0.73 ± 0.10
RS 18506 0.34 ± 0.03

synchronizing VLBI and WVR

VLBI 8383 0.80 ± 0.03
WVR 8383 0.43 ± 0.04

synchronizing VLBI and RS

VLBI 1048 0.62 ± 0.11
RS 1048 0.29 ± 0.11

synchronizing WVR and RS

WVR 7716 0.74 ± 0.06
RS 7716 0.51 ± 0.06

4. CONCLUSIONS AND OUTLOOK

The preliminary results presented in Table 1 show that all three techniques detect positive trends in IPWV on the order of 0.3
to 0.7 kg/m2 per decade. However, the individual trends do not agree. The formal errors presented are too optimistic and have
to be in ated by a factor of 5-10 to represent more realistic uncertainties.

A major problem in the comparison is the different sampling of the three data sets and the data gaps. The attempt to
synchronize the data sets has a signi cant impact on both the number of data points used in the analysis and the derived
IPWV trends. However, the corresponding changes are not completely understood yet. In particular appears the pairwise
synchronization of the VLBI data with the other two data sets increase the disagreement between the derived trends. This is
unexpected and needs further investigation.

Based on these preliminary results we will continue and intensify our analysis. We plan to present at the IGARSS2010
conference a thorough statistical analysis of the data. We will also address methods to integrate and combine the data sets in
order to derive robust estimates of potential IPWV trends.
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