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1. INTRODUCTION

Numerous studies have shown the accuracy and ef ciency of airborne laser scanning (ALS) for estimation of forest stand param-
eters [1]. One of the widely-used processing method is the so-called area-based method. It consists in relating forest parameters
to several height and density metrics derived from the laser point cloud in xed areas [2]. Whatever the forestry context, most
of the studies relied on ordinary least squares to establish relationships between laser metrics and forest parameters. However
parametric methods reach their limits when dealing with a small number of eld observations combined with high dimensional
data. Such cases tend to occur frequently when laser scanning data is acquired over mountainous forests. Indeed, the lack of
accessibility hamper eld inventories whereas numerous laser metrics may be extracted from the point cloud. k-most similar
neighbor method has been successfully tested for species-speci c stand attributes estimation from laser data [3], opening ways
to investigate the potential of other non parametric methods.
Support vector machines are a training approach based on the framework of statistical learning theory. They have proven their
robustness to dimensionality and generalization abilities [4] and thanks to the kernel trick non-linear relationships can be ac-
counted for. In this paper we aim at comparing accuracies of forest parameters estimates obtained with ordinary least squares
multiple regression and support vector regression (SVR). The sensitivity of these techniques to the number of laser metrics
combined with dimension reduction by principal component analysis (PCA) or individual component analysis (ICA) has also
been investigated.

2. MATERIAL

The study area is a 4 km2 hillside situated in the French Alps. The forest is mainly constituted of coppice stands and deciduous
stands on poor quality sites. From September to November 2009, 31 circular eld plots were georeferenced and inventoried.
All trees with diameter at breast height larger than 5 cm and located within 10 m radius from the plot center were calipered. 10
tree heights were sampled on each plot. The following forest parameters were then computed for each plot: mean diameter at
breast height (dbh), basal area (G), stem density (N ) and dominant height (Hdom).
The laser data was acquired with an airborne RIEGL LMS-Q560 scanner on August 27th, 2009. Final average scanning density
was 2.8 pulses.m-2. The point cloud was classi ed into ground and non-ground echoes using the TerraScan software.

3. METHODS

For each plot, laser points within 10 m horizontal distance form the plot center were extracted. Their relative heights were com-
puted by subtracting the terrain height at their orthometric coordinates. Terrain surface was estimated by bilinear interpolation
of points classi ed as ground points. Points with relative height lower than 2 m were excluded. Three point groups were then
constituted according to the return position of the echoes: single echoes (only one echo for a given pulse), rst echoes and last
echoes. For each group three types of laser metrics were calculated. Height metrics correspond to breakpoints of height bins
containing an equal number of points, plus mean height. Density metrics were computed as the values of the cumulative density
in height bins of equal width. Entropy metrics were calculated as the entropy of the orthometric distribution of points included
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in height bins of equal width. All calculations were performed with R 2.10.0 statistical software.
A set of independent predictors (vi)i∈{1,...,nv} is thus composed of nv = 3 × (nh + nd + ne) laser metrics, where nh is the
number of height breakpoints plus one (for mean height), nd the number of density bins and ne the number of entropy bins.
When the number of observations N = 31 was greater than the number of variables nv, PCA and ICA were performed to re-
duce dimension. The obtained principal and independent components were also used as sets of predictors. For each dependent
variable y ∈ {dbh, G, Ns, Hdom} and each predictors set (vi), the resulting training data {(x1, y1), ..., (xN , yN )} ⊂ Rnv × R
was used to t a multiple regression model by ordinary least squares:

y = b +
nv∑

i=1

ai × vi with (vi)i∈{1,...,nv} a set of predictors and ((ai)i∈{1,...,nv}, b) the model parameters. (1)

Models including a maximum of four predictors were tested by exhaustive search. Models which did not ful ll the linear model
assumptions or including a predictor with a partial p-value greater than 0.05 were discarded. For each predictors set the model
with the highest adjusted coef cient of determination (adjusted R2) was selected. The data sets were also used to train an
ε-SVR. The algorithm approximates a function f : y = f(v) with a solution of the form:

f(v) =
n∑

j=1

αjk(v, xj) + β (2)

with (xj)j∈{1,...,n} samples from the training set, ((αj)j∈{1,...,n}, β) parameters determined during the training process and k
a kernel function. Linear and radial basis kernels were tested. Hyperparameters were selected by tuning over a range of a priori
values. Multiple and ε-SV regression accuracies were evaluated in leave-one-out cross validation by computing the root mean
square error (RMSE) and its coef cient of variation (CVRMSE):

RMSE =

√∑N
i=1 o(yi − ŷi)2

N
, CVRMSE =

RMSE

ȳ
with ȳ =

1
N

N∑

i=1

yi (3)

where yi and ŷi are the observed and predicted values, and N the number of observations. Table 1 summarizes all tested
combinations of parameters and methods.

Parameters Number of
height metrics

nh

Number of
density metrics

nd

Number of
entropy metrics

ne

Variables
transformation

Number of extracted components

Values {6, 8} {0, 1, 3} {0, 2} none -
{PCA, ICA}∗ {2, 3, 4, 6, 8, 12, 16, 20, 24, all}∗

Table 1. Independent variable sets used to t the regressions (∗when relevant).

4. RESULTS AND DISCUSSION

Prediction estimates by multiple linear regression yielded satisfactory results. For the variables set with 27 laser metrics without
dimension reduction (nh, nd, ne) = (6, 3, 0), the coef cient of variation of the RMSE ranged from 13.9 to 21.2%. The
best result is achieved for dominant height whereas stem density performed poorly. Mean diameter and basal area obtained
intermediate values (18.8 and 21.2% respectively). These results are similar to those obtained in a study carried on 34 deciduous
plots located in the Bavarian Forest National Park (Germany) [5]. Dimension reduction improved slightly the accuracy for
dominant height only (CVRMSE = 13.5% with 12 components from PCA). Table 2 summarizes the best results obtained with
multiple and ε-SV regressions for the predictors sets derived from (nh, nd, ne) = (6, 3, 0). Apart from mean diameter, multiple
regression performed better than ε-SVR. However obtained values were rather close, except for basal area.
Figure 1 illustrates the effect of dimension reduction and kernel selection on ε-SVR accuracy for the same predictors sets
(nh, nd, ne) = (6, 3, 0). Drastic dimension reduction (number of components less than 5) yielded better accuracies than with
the original predictors set. Best results were obtained with PCA, except for stem density. Accuracy tends to decrease when the
number of predictor increases further than 5. However, ε-SVR seems less sensitive to the number of components when PCA is
employed instead of ICA. Even tough the best individual results were mostly obtained with linear kernel, radial kernel seems



more robust regarding the type and number of components included in the predictors sets. Stem density turned out to be the
most complex case to interpret, as well as the most dif cult parameter to estimate, as pointed out in other studies [2][5].
Figure 2 depicts the in uence of the number and type of laser metrics on the prediction accuracy. ε-SVR is generally less
accurate than multiple regression. However its results tend to be more stable, in particular with radial kernel. An improvement
in basal area estimation by ε-SVR can be observed when the number of height metrics increases from 6 to 8 but it is mitigated
when other metrics are added. Stem density prediction by multiple regression improves when density metrics are added to
predictors sets. So does the accuracy of mean diameter estimates when the number of height metrics is increased. Besides,
accuracy values for basal area, stem density and basal area are quite stable. Dominant height estimates display no particular
trend, except that the increase in height metrics number combined with the inclusion of entropy metrics yields better accuracy
with multiple regression.

Muliple regression ε-SVR

CVRMSE

(%)

Number of
predictors in the

model

Dimension reduction
and number of
components

CVRMSE

(%)
Kernel

Dimension reduction
and number of
components

Hdom 13.5 4 PCA-12 14.5 linear PCA-4
G 18.8 4 none 25.9 linear PCA-2
Ns 21.2 3 none 24.2 radial ICA-2
dbh 15.0 1 none 14.8 linear PCA-2

Table 2. Best prediction accuracy obtained with multiple regression and ε-SVR with the predictors sets derived from laser
metrics with (nh, nd, ne) = (6, 3, 0), and corresponding dimension reduction settings.
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Fig. 1. Accuracy of prediction (RMSE obtained by leave-one-out cross validation) of ε-SVR with linear (black symbols) and
radial (gray symbols) kernels, plotted against the number of predictors. Symbol types refer to the method used for dimension
reduction: PCA (dotted lines), ICA (solid lines) or none (triangles). Predictors sets are derived from (nh, nd, ne) = (6, 3, 0).

5. CONCLUSION

The results of the area-based method applied in this study to predict forest parameters from airborne laser scanning data showed
that the accuracy of ε-SVR estimates are similar to or poorer than those obtained by ordinary least squares multiple regression.
Dimension reduction of laser metrics by PCA improved the ε-SVR accuracy, whereas multiple regression performed better on
raw laser metrics. On the whole, radial kernel turned out to be slightly more accurate and robust than linear kernel. Multiple
regression was more sensitive to the number and type of laser variables included in the training sets than ε-SVR. Moreover the
effect of addition or removal of laser metrics depended on the predicted forest parameter.
Further research should focus on factors that may improve support vector regression, such as other kernels or algorithms
(ν-SVR), or inclusion of a larger number of chosen laser metrics. Besides advantage could be taken of SVR robustness when
predicting parameters for forest stands or laser data different from those used to train the algorithm. The trade-off between
accuracy of estimates and intensity of eld campaign is indeed a major factor of concern when dealing with forest inventory at
operational scale in mountainous areas.
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Fig. 2. In uence of the number and type of laser metrics on the accuracy of prediction (RMSE obtained by leave-one-out cross
validation) of multiple regression (×) and ε-SVR with linear (•) and radial (◦) kernels. Triplets on the x-axis refer to the number
of laser height, density and entropy metrics (nh, nd, ne) used to construct the predictors sets.
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