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I. INTRODUCTION

THE widely-used convex geometry model for hyper-
spectral imagery assumes that spectra in a hyperspectral

image are the convex combinations of the endmembers in the
scene [1, 2],

xi =

M∑
k=1

pikek + εi i = 1, . . . , N (1)

where N is the number of pixels in the image, M is the
number of endmembers, εi is an error term, pik is the
proportion (abundance) of endmember k in pixel i, and ek

is the kth endmember. The proportions of this model satisfy
the constraints in Equation 2,

pik ≥ 0 ∀k = 1, . . . , M ;

M∑
k=1

pik = 1. (2)

Given this model, spectral unmixing and endmember detection
are the tasks of determining the endmembers and the propor-
tions for every data point in the scene. Several endmember
detection and spectral unmixing algorithms have been devel-
oped in the literature. However, the majority of these methods
do not provide an autonomous way to estimate the number of
endmembers and, thus, require the number of endmembers in
advance. These methods include those based on Non-negative
Matrix Factorization [3, 4], based on Indepenent Components
Analysis [5, 6], and others [7, 8]. The number of endmembers
is often unknown in advance.

Methods to estimate the number of endmembers from a
data set have been developed as well. These methods include
Virtual Dimensionality (VD), Transformed Gerschogorin Disk
(TGD), the Noise-Adjusted TGD, and the Partitioned Noise-
Adjusted Principal Components Analysis (PNAPCA) methods
[9–11]. The VD method estimates the number of endmembers
using the eigenvalues of the covariance and correlation matri-
ces of the hyperspectral data set. The number of endmembers
is set to the number of eigenvalues from the covariance
and correlation matrices that differ based on some computed
threshold. Due to the variances used when computing the
thresholds, the VD method can be sensitive to noise in the
data. The PNAPCA method relies on the use of the Maximum
Noise Fraction (MNF) algorithm [12]. MNF simultaneously
diagonalizes the data covariance matrix and whitens the noise
covariance matrix for a data set. This requires an estimate
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of the noise covariance matrix in advance. PNAPCA par-
titions the noise-adjusted covariance matrix found by MNF
and compares eigenvalues from the partitions to estimate the
number of endmembers. However, an accurate estimate of the
noise covariance matrix can be difficult to provide. The TGD
method for estimating the number of endmembers uses the
Gerschogorin disk theorem. This theorem provides a method
of estimating the locations of eigenvalues for a matrix [13].
The TGD method defines a transformation that aims to cause
the Gerschgorin disks associated with noise to have small radii
and be located far from the disks associated with signal in
the data. The Noise-Adjusted TGD applies this method to the
noise-adjusted covariance matrix found using MNF. The TGD
methods are also sensitive to noise.

The presented algorithm, the L1-Endmembers algorithm,
provides a noise and outlier robust method to simultaneously
estimate endmember spectra, proportion values and the num-
ber of endmembers using an L1 norm error term.

Both [14] and [15] use the L1 norm and the Huber M-
Estimator for matrix factorization. However, in hyperspectral
endmember detection, the constraints on the abundances
shown in Equation 2 are required to provide physically
meaningful results. These constraints are not enforced in the
matrix factorization methods presented in [14] and [15]. In
addition, the L1-Endmembers algorithm provides a sparsity-
promoting term used to simultaneously estimate the number
of endmembers needed for the image. This sparsity-promoting
term is not used in the matrix factorization methods.

II. ENDMEMBER DETECTION USING THE HUBER

M-ESTIMATOR

The L1-Endmembers algorithm estimates endmembers, pro-
portions and the number of endmembers by iteratively opti-
mizing an objective function containing three terms. The first
term of the objective function computes the error between the
input data points and their reconstruction using the estimated
endmembers and proportion values.

EL1
(E, P ) =

∥∥X − EPT
∥∥

L1

(3)

where ‖Z‖L1
=

∑
i

∑
j |zij |. This error term uses the L1

norm when computing this cost function. In contrast, the L2

norm is used in the SPICE and ICE algorithms [16, 17]. The
use of the L1 norm in this term provides resiliance against
noise and outliers in the data. The robustness of the L1

norm when compared to the L2 is established [14, 18] and is
illustrated in Figure 1(a). In the figure, the y-axis corresponds
to the penalty for a given error using either the L1 or L2

norm. As you can see, the L1 norm has a lower penalty value
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for large errors providing a higher tolerance for outliers when
compared to the L2 norm. Figure 1 also illustrates the sparsity
promoting properties of the L1 norm over the L2 norm. The
L2 norm prefers a series of many small errors instead of a
small number of large errors.

(a) (b)

Fig. 1. (a) Plot of the penalty values for the L1 and L2 norms for the
interval of [-10, 10] and (b) for the interval of [-1.5, 1.5].

The Huber M-Estimator cost function approximates the L1

norm and is shown in Equation 4.

ρ(t) =

{
1

2
t2 if |t| ≤ γ

γ|t| − 1

2
γ2 if |t| > γ

. (4)

where γ is a positive constant parameter. As γ → 0+, the
Huber M-estimator becomes the L1 norm [19]. Figure 2 shows
a comparison of the Huber M-Estimator for many γ values in
comparison to the L1 norm.

Fig. 2. Comparison of the Huber M-Estimator with Gamma Values of 0.5,
0.25 and 0.1 to the L1-Norm.

Using the Huber M-estimator, the first term of our L1-
Endmembers objective function becomes

EH(E,P) =

N∑
i=1

ρ (xi − piE) (5)

Each term in this cost function, as shown in [14] and [15], can
be rewritten as the quadratic programming problem shown in
Equation 6 when solving for the proportion values.

min
p∈RM ,z∈RD ,t∈RD

1

2
‖z‖L2

+ γ1T t

s.t. − t ≤ Epi − xi − z ≤ t

(6)

where xj is the ith data point, pi is the vector of proportion
values for the ith data point, D is the data dimensionality, M

is the number of endmembers, and 1 is a vector of ones. A
similar form is used when solving for endmembers.

The second term of our objective function promotes
endmembers that provide a tight fit around the data.

EV (E) =
1

2

M∑
i=1

M∑
j=1

(ei − ej)
T

(ei − ej) (7)

where M is the number of endmembers.
The final term of our objective function uses the sparsity

promoting properties of the Laplacian distribution to determine
the number of endmembers. This term determines the num-
ber of endmembers by driving the proportions of unneeded
endmembers to zero. Endmembers whose proportion values
are driven to zero can be removed without any effect on the
value of the cost function in Equation 5.

ES(A) =

M∑
k=1

λk

N∑
i=1

|pik| =

M∑
k=1

λk

N∑
i=1

pik (8)

where λk = ΛP
N

i=1
pik

using the proportion values from the
previous iteration. The second equality in Equation 8 comes
from the non-negativity constraints on the proportion values
in Equation 2. Both Equations 7 and 8 are also used in the
SPICE objective function [16].

The complete objective function is E = αEH +βEV +ES

where α and β are coefficients determining the weight of the
corresponding term. The Λ value used in ES of the objective
function controls the degree of sparsity used to determine the
number of endmembers. In other words, Λ controls the scale
value in the Laplacian prior on the abundance values. A larger
value causes the Laplacian to have a sharper peak at zero.

The L1-Endmembers algorithm iteratively updates the pro-
portions, endmembers, and number of endmembers. During
an proportion update, the quadratic programming problem is
shown in Equation 9.

min
p∈RM ,z∈RD ,t∈RD

1

2
‖z‖L2

+ γ1T t + ES

s.t. − t ≤ Epi − xi − z ≤ t

pik ≥ 0 ∀i, k

M∑
k=1

pik = 1.

(9)

Similarly, the quadratic programming problem for solving
for the endmembers during an endmember update is shown in
Equation 10.

min
e∈RM ,z∈RN ,t∈RN

1

2
‖z‖L2

+ γ1T t + βEV

s.t. − t ≤ Pej − xj − z ≤ t

(10)

where xj is the vector of values from the jth band across all
data points, ej is the vector containing the value from the jth

band over all endmembers, N is the number of data points,
M is the number of endmembers, and 1 is a vector of ones.

After an iteration of updating endmembers and proportions,
the proportions associated with each endmember can be ex-
amined. If the maximum proportion value falls below some
threshold, the endmember can be pruned. During experimen-
tation, the number of endmembers was found to be insensitive
to this threshold value.

III. EXPERIMENTAL RESULTS

L1-Endmembers was run on both simulated and real hyper-
spectral imagery. These experiments examine the stability
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accuracy of the algorithm. Comparisons to the SPICE algo-
rithm that estimates endmembers, proportions and the number
of endmembers using an L2 error term is conducted. Also,
the number of endmembers found by L1-Endmembers is
compared to the number found by the VD method.

A. Two-Dimensional Data with Increasing Noise Levels

In order to test the stability and accuracy of the algorithm,
L1-Endmembers was run on two-dimensional data with in-
creasing levels of noise. The advantage of using this data set
is that the true endmember values and number of endmembers
are known. The data set was generated from three endmembers
whose values are [0,0], [0,3] and [1,2]. Both L1-Endmembers
and SPICE were run 50 times for each noise level with
random initializations. Zero-mean Gaussian random noise was
added to each data point. The level of noise was increased by
increasing the variance on the noise Gaussian. The parameters
used for each run of the L1-Endmembers algorithm were
α = 1, β = 0.1, Λ = 0.5, initial number of endmembers was
20, and the endmember pruning threshold was set to 1×10−9.
The parameters used for each run of the SPICE algorithm
were μ = 5 × 10−4, γ = 0.5, endmember prune threshold =
1 × 10−9 and the initial number of endmembers was set to
20 where the notation for these parameters comes from [16].
For both algorithms, the parameters were adjusted until an
accurate result was found on the data without any noise; then,
they were held constant for all remaining runs.

The number of runs with the correct number of endmembers
found is shown in Table I.

TABLE I
NUMBER OF RESULTS WITH THE CORRECT NUMBER OF ENDMEMBERS

FOUND (OUT OF A TOTAL OF 50 RUNS)

Experiment L1-Endmembers SPICE
2-D, No Noise 50 49
2-D, 0.1 Noise 50 43
2-D, 0.25 Noise 47 21

B. AVIRIS Cuprite Data Experiment

The L1-Endmembers algorithm was also run on “Scene 4”
of the AVIRIS Cuprite data set [20]. This data contains 51
contiguous spectral bands in the range of 1978 to 2477 nm.
Like [16], L1-Endmembers was run on a subset of pixels from
the image using candidate points selected with the pixel purity
index (PPI) [21]. PPI was run for 10,000 random projections
and points within a distance of two from the boundary of the
projection received increased purity indices. The 1,011 pixels
with the highest PPI were used as the candidate points. Several
of the points had a tie in PPI value. The parameters used for the
L1-Endmembers algorithm on the Cuprite data were the same
as those used for the two-dimensional data. Several of these
endmembers match the spectral shapes of materials known
to be in the Cuprite Scene. A direct comparison of some of
these materials with spectra from the USGS spectral library
are shown in Figure 3 [22].

Since the true number of endmembers for the full Cuprite
data scene is not known, three hand-selected endmembers were

(a) (b)

Fig. 3. (a) Comparison of endmember found using L1-Endmembers and
an Alunite spectra from the USGS spectral library. (b) Comparison of
endmembers found and a Kaolinite spectra from the USGS spectral library.
Dashed lines are the endmembers found by L1-Endmembers. Solid lines show
spectra from the USGS spectral library.

chosen from the scene that correspond to alunite, kaolinite
and calcite spectra. Two data sets were generated from these
endmembers with differing levels of noise, these data sets
are shown in Figure 4. L1-Endmembers and the Virtual
Dimensionality algorithms were applied to each data set. When
running the VD algorithm, the NSP threshold method was
used [9]. This thresholding method was selected because it
produced the most accurate results on this data set when
compared to the other VD thresholding methods. On the
data set with a lower noise levels, both L1-Endmembers and
VD estimated the correct number of endmembers at three.
However, with the increased noise level in Figure 4(b), the
VD algorithm incorrectly estimated two endmembers when
the L1-Endmembers was able to maintain the correct estimate
of three.

(a) (b)

Fig. 4. (a) Data set generated from three AVIRIS Cuprite endmembers using
zero-mean Gaussian noise with a variance of 0.025. Endmembers correspond
to alunite, kaolinite and calcite. (b) using Zero-mean Gaussian noise with a
variance of 0.05.

IV. CONCLUSIONS AND FUTURE WORK

The results from L1-Endmembers display that the algorithm
was extremely stable in the number of endmembers when com-
pared to the SPICE algorithm and the Virtual Dimensionality
methods for estimating the number of endmembers. Further-
more, the results shown for this algorithm were generated with
the same parameter set for all of the data sets, from two-
dimensional data to 51-dimensional real hyperspectral data.
This indicates L1-Endmembers lack of sensitivity to parameter
value settings which is very desirable.

The L1-Endmembers algorithm requires several quadratic
programming steps per iteration: one for each band during
the endmember update and one for each data point during the
abundance vector updates. These quadratic programming steps
can be used directly in large scale quadratic programming soft-
ware packages such as CPLEX and, therefore, take advantage
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of any running time reductions the software packages provide.
However, investigations will be conducted into whether the
specific form of this algorithm, particularly with respect to the
constraints on the abundance values, can be used to reduce the
running time.
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