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ABSTRACT 
 

In the last years, the growing importance of a large scale understanding and monitoring of the earth system and 

the rapid sensor technology development have animated a strong interest of the remote sensing community to the 

problem of estimating biophysical parameters from remote sensing data. Examples of related applications are the 

estimation of ozone concentration in the atmosphere, biomass concentration in forest areas, and water quality 

parameters like the chlorophyll concentration for monitoring oceans and costal areas. 

From a methodological point of view, this problem can be approached by viewing it as an inverse modeling 

issue which can be solved in two different ways. These last consist to define a model which relates the acquired 

observations to the parameter of interest. While the first way is based on a parametric model which depends on a 

predefined set of parameters (e.g., polynomial and exponential models), the second one makes use of a 

nonparametric model whose behavior is completely data-dependent. In both cases, the model is estimated by 

regression from training samples (pairs of received radiances and in-situ measurements of the biophysical 

parameter concentration). Usually, parametric models are not sufficiently effective to capture the relationships 

between biophysical parameters and acquired radiances due to their complexity. By contrast, nonparametric 

techniques often prove to be more suitable for performing such task, but at the price of higher computational 

complexity. Among these techniques, one can find artificial neural networks (ANNs) [1] and support vector 

machines (SVMs) [2], [3]. 

Recently, a new machine learning approach that is based on the Gaussian process (GP) theory has been 

introduced in the literature and has shown particularly promising for estimating biophysical parameters from 

remotely sensed data [4]-[5]. According to this approach, the learning of a machine (regressor or classifier) is 

formulated in terms of a Bayesian estimation problem, where the parameters of the machine are assumed to be 



random variables which are a-priori jointly drawn from a Gaussian distribution. The underlying idea of the GP 

regression can be described in different ways. The simplest one consists to adopt a linear regression model in 

which the parameters are assumed to be jointly Gaussian random variables with a predefined mean vector 

(generally the origin of the parameter space) and covariance matrix. The observed values of the linear function (to 

model) are supposed to come from the sum of the (latent) linear function and a Gaussian noise. The estimation of 

the linear model parameters is carried out under a Bayesian framework which requires the estimation of the 

posterior probability function over the parameters. It is shown that the posterior function is a Gaussian distribution 

whose parameters depend on the training samples, the covariance matrix and the noise variance. As a result, the 

probability distribution of the function observations follows a Gaussian behavior whose mean and variance 

depend also on the input feature vector (for which the function estimate is desired). Since most of the real 

regression problems are not expected to be linear, the above regression procedure is reformulated by simply 

kernelizing the linear regression model. Consequently, the distribution of the function observations becomes a 

function of kernel distances between training samples, defining the kernel matrix, and between the training 

samples and the sample for which the estimation is desired. Two important information can be retrieved from this 

distribution: 1) the mean, which will represent the function (output) estimate for the considered sample; and 2) the 

variance which will quantify the confidence associated whit the output estimate. 

In general, however, the success of the above mentioned regression methods is conditioned by the availability 

of sufficient and representative training samples to obtain reliable estimation accuracies. Nonetheless, in practice 

collecting a statistically significant and representative amount of training (labeled) samples is often a difficult and 

time consuming task. To face such issue, a semisupervised regression method based on SVM regression has been 

introduced recently [6]. Its underlying idea is to inflate the training set with unlabeled samples, which are readily 

available at zero cost from the remote sensing data under analysis, to compensate the scarcity of labeled samples. 

By unlabeled data, we mean generic samples whose input (observation) values are known, whereas the 

corresponding desired outputs (biophysical parameter concentrations) are unknown. 

In this work, we propose to apply a similar inflation approach to the GP regression problem. In particular, 

during the learning phase of the approach, unlabeled samples are exploited to inflate the training set. The 

estimation of the targets associated with these samples is carried out by solving an optimization problem 

formulated within a genetic optimization framework [7]. The search process of the target estimates is guided by 

the separate or joint optimization of two different criteria expressing the generalization capabilities of the GP 

estimator. The two explored criteria are: 1) the empirical risk quantified in terms of the mean square error (MSE) 

measure; and 2) the log marginal likelihood. This last merges two terms expressing the model complexity and the 

data fit capability, respectively. The joint optimization is performed by means of the multiobjective nondominated 

sorting genetic algorithm (NSGA-II) [8]. The selection of the unlabeled samples has been envisioned according to 



three different criteria: random sampling, estimate variance provided by the GP regressor and differential entropy 

measure [9]. 

Several experiments were conducted on simulated as well as real datasets referring to measurements of 

chlorophyll concentration in coastal waters. The obtained results show that significant gains of estimation 

accuracy can be achieved thanks to the inflation process in particular when adopting a multiobjective optimization 

scheme with a selection of the unlabeled samples based on the differential entropy measure. 
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