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1. INTRODUCTION

Hyperspectral imaging is a continuously growing area of remote sensing application. The wide spectral range, providing a very

high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem

of hyperspectral data is that the high spectral resolution is usually complementary to the spatial one, which can vary from a few

to tens of meters. Many factors, such as imperfect imaging optics, atmospheric scattering, secondary illumination effects and

sensor noise cause a degradation of the acquired image quality, making the spatial resolution one of the most expensive and

hardest to improve in imaging systems. Several techniques have been proposed during the last few years in order to improve

the spatial resolution of hypersepctral images [1, 2]. The main drawback of all these approaches is that they fuse information

from a high resolution image with the hyperspectral one to enhance the spatial resolution, thus needing an additional source

of information. Super-resolution mapping, that is the possibility to enhance spatial resolution of hyperspectral images using

both spatial and spectral information, is a recently born concept [3]. In this work, a novel method, based on the use of source

separation technique and a spatial regularization step by simulated annealing which doesn’t require any a priori knowledge or

further information is proposed to improve the spatial resolution of cover classification maps.

2. METHODOLOGY

2.1. Spectral Unmixing

In hyperspectral images with a low spatial resolution, several different materials can be found in the same pixel. In this

case, a common hard classification process, where each pixel is assigned to a class, fails. A solution consists in using source

separation, in order to retrieve the mixed endmembers lying within each pixel [4]. Spectral unmixing is the first step of the

proposed approach, due to its ability to provide a complete description of each pixel. In the last years, several algorithms have

been developed for automatic or semi-automatic extraction of spectral endmembers directly from the image data [5].

In this work, the Vertex Component Analysis (VCA) has been chosen due to its good performances with respect to several

source separation algorithms both for the accuracy of retrieved endmembers and from a computational point of view [6]. Once

the endmembers are extracted from the image, the abundance fraction of the elements within each pixel should be determined.

Several algorithms have been developed to handle the linear mixing model according to the required constraint of abundances

fractions, which are nonnegativity and full additivity. Due to the efficiency from a computational point of view, we have chosen
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a fully constrained least squares (FCLS) algorithm, which satisfies both abundance constraints and is optimal in terms of least

squares error [7].

2.2. Improving Spatial Resolution

Spectral unmixing is useful to describe the scene at a sub-pixel level, but can only provide information about proportions of the

endmembers within each pixel. Since the spatial location remains unknown, spectral unmixing does not perform any resolution

enhancement. In this paper, we propose a super-resolution mapping technique, which takes advantage of the information given

by the spectral mixing analysis and uses it to enhance the spatial resolution of thematic maps. Our proposed approach is as

follows: In a first step, each pixel is divided in a fixed number of sub-pixel, according to the desired resolution enhancement.

Every sub-pixel is assigned to an endmember, in conformity with its fractional abundance within the pixel. A Simulated

Annealing (SA) mapping function is then used, to create random permutation of these sub-pixels, in order to minimize a chosen

cost function. Relying on the spatial correlation tendency of landcovers, we assume that each endmember within a pixel should

be spatially close to the same endmembers in the surrounding pixels. Therefore, the cost function to be minimized is chosen as

the perimeter of the areas belonging to the same endmember.

Simulated annealing is a well established stochastic technique originally developed to model the natural process of crystalization

[8]. This process is based on an analogy from thermodynamics where a system is slowly cooled in order to reach its lowest

energy state. More recently, SA has been proposed to solve global optimization problems [9], and it has been used in various

fields. The basic idea of the method is that, in order to avoid to be trapped in local minima, uphill movements, i.e., the

points corresponding to worse objective function values could, sometimes, be accepted for the following iteration. As with

a greedy search, it accepts all the changes that improve the solution. Changes degrading the solution can be accepted, but

with a probability that is inversely proportional to the size of the degradation (small degradations are accepted with a higher

probability). This probability also decreases as the search continues, or as the system cools, allowing eventual convergence to

the optimal solution.

3. EXPERIMENTS

In this section, results obtained on real data sets are presented. We consider ROSIS data acquired over the University of Pavia,

Italy, with 103 bands, ranging from 0.43 to 0.86 μm, with a 1.3 m spatial resolution. The high value of the spatial resolution is

due to fact that ROSIS is an airborne sensor. Here, we consider a small segment (110x75 pixels) of the image, which contains

several elements of interest, namely meadows, asphalt, metal sheet and shadows. Figures 1 (a) and (b) show a gray scale image

of the 30th band of the scene and the available reference data. The original image was processed with a 5x5 low pass filter,

so that each pixel in the new image represents a square of 8.5 meter (Figure 1c), which is a realistic assumption when dealing

with hypersepectral data. We performed two experiments on the obtained data set: assuming that no ground truth is available

to train a classifier, we first performed an unsupervised classification of the low resolution image, with a k-means classifier. In

a second test, we applied the proposed method to enhance the spatial resolution of the thematic map. Results are presented in

Figure 1 (d) and (e). When mixed pixels belong to the scene, as in the case here, an unsupervised classifier inevitably leads to

poor results. The class shadow, represented in dark brown, which is only in a small portion of the image, was not detected, and

also the metal sheet (color green) was not well retrieved. Based on a visually comparison, results obtained with the proposed

method were much closer to the reference data. In order to have a quantitative assessment of the results we have compared the

reference data with the obtained map. The overall accuracy was 87.46%
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Fig. 1. (a) Original high resolution data, band 30 (b) Ground truth of HR image (c) Low resolution image obtained after filtering

(d) Classification map obtained with a k-means classifier (e) Classification map obtained with the proposed method
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