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1. INTRODUCTION

The new generation of high resolution SAR sensors are able to produce high quality images of the Earth’s surface. As the

number of scatterers per resolution cell decreases, heterogeneous clutter model should be used to extract information. In this

context, Spherically Invariant Random Vector (SIRV) have been introduced. The Polarimetric SAR (PolSAR) target vector

k can be rewritten as the product between the square root of a positive random variable τ (representing the texture) and an

independent complex Gaussian vector z with zero mean and covariance matrix [M ] = E{zzH} (representing the speckle):

k =
√

τ z.

This paper introduces a new shift estimator based on the Fisher PDF for texture modeling. The proposed approach gen-

eralizes the Gamma PDF shift estimator introduced by Erten et al. in [1]. The general methodology employed for Maximum

Likelihood (ML) texture tracking is exposed in section 2. Both models with uncorrelated and correlated texture between images

are investigated. Next, some improvements of the conventional ML texture tracking algorithm are exposed in section 3. Finally,

displacement results on synthetic and real images are presented in section 4.

2. MAXIMUM LIKELIHOOD TEXTURE TRACKING

Let kx = [kx1
, . . . ,kxk

] and k
i
y =

[
k

i
y1

, . . . ,ki
yk

]
be two blocks of the PolSAR data-set containing k pixels. Subscripts x and

y are referred respectively to the master and slave images. The texture blocks τx = [τx1
, . . . , τxk

] and τ i
y =

[
τ i
y1

, . . . , τ i
yk

]
are

then estimated from the PolSAR data-set kx and k
i
y according to the SIRV estimation scheme [2]. Those two texture blocks

are shifted by a displacement called i. The ML texture tracking algorithm estimates the shift vector −→v ML which maximizes for

each block i the Conditional Density Function (CDF) [1]. It yields:

−→v ML = Argmax
i

p
(
τx|τ i

y,−→v i

)
= Argmax

i

k∏
j=1

1

τ i
yj

pα

(
τxj

τ i
yj

)
. (1)
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where pα (·) is the texture ratio PDF (α = τx/τ i
y).

In this paper, the Fisher PDF is introduced to model the texture parameter τ . Its PDF is given by:

pτ (τ) = F [m,L,M] =
Γ(L + M)

Γ(L)Γ(M)

L
Mm

( Lτ

Mm

)L−1

(
1 +

Lτ

Mm

)L+M
(2)

where m is a scale parameter, L and M are two shape parameters. The Fisher PDF has been successfully validated to model

the texture parameter of highly heterogeneous clutters [3]. Next, the texture ratio PDF pα should be derived for both correlated

and uncorrelated texture between images.

2.1. Texture model with uncorrelated texture between images

For a Fisher distributed texture, authors have established the texture ratio PDF for uncorrelated texture between images. Its

expression is given by:

pα(α) =
B(2L, 2M)

[B(L,M)]
2

1

αM+1
× 2F1

(
L + M, 2M; 2 (L + M) ;

α − 1

α

)
(3)

where 2F1(·, ·; ·; ·) and B(·, ·) are respectively the Gauss hypergeometric function and the Euler Beta function. Note that for

uncorrelated texture between images, the scale parameter m simpli es when the texture ratio PDF is studied.

By combining (1) and (3), and following the same procedure as [1], the similarity measure is obtained:

ML(−→v i) = k ln

(
B(2L, 2M)

[B(L,M)]
2

)
−(M + 1)

k∑
j=1

ln τxj
+M

k∑
j=1

ln τ i
yj

+

k∑
j=1

2F1

(
L + M, 2M; 2 (L + M) ; 1 − τ i

yj

τxj

)
. (4)

2.2. Texture model with correlated texture between images

The texture ratio PDF for correlated texture between images has been derived from the bivariate Fisher distribution [4]. Its

expression is given by:

pα(α) =
RL1

1 RL2

2 B(L1 + L2,M2)

B(L1,M1) B(L2,L1 + M2)
× αL1−1

(R1α + R2)
L1+L2

× 2F1 (a, b; c; z) (5)

where a = L1 + L2, b = M2 −M1, c = L1 + M2, z =
1

1 + R2

R1

1

α

, R1 =
L1

M1m1

and R2 =
L2

M2m2

.

Similarly, combining (1) and (5) yields to:

ML(−→v i) = kL1 lnR1 + kL2 lnR2 + k ln

(
B(L1 + L2,M2)

B(L1,M1) B(L2,L1 + M2)

)

+

k∑
j=1

L1 ln
τxj

τ i
yj

− ln τxj
− (L1 + L2) ln

(
R1

τxj

τ i
yj

+ R2

)
+ 2F1 (a, b; c; zj) .

(6)

3. ADVANCED SIGNAL PROCESSING ISSUE FOR DISPLACEMENT ESTIMATION

Classical ML texture tracking uses rectangular sliding window. As the derived criteria are issued from statistical modeling,

authors proposed to adapt the sliding window instead of the conventional rectangular one. Moreover, as motion estimation



is often used in a geophysical monitoring context (glacier, volcano, . . . ), it could be judicious to add a physical ow model

constraint. This regularisation step is introduced through the Bayes’s rule.

3.1. Adaptive Offset Estimation

As the ML texture tracking algorithm studies the statistic of the population, the considered area should be homogeneous in term

of stochastic process. The proposed approach consists in partitioning the data-set. A ML hierarchical segmentation algorithm is

adapted to the multivariate KummerU distribution (texture is Fisher distributed) [3]. Fig. 1(b) shows an example of segmentation

of a crevasses eld on the Argentière glacier in the Mont-Blanc massif. Then, for each segment, the ML texture tracking is

computed considering that the motion is uniform on each segment.

(a) (b)

Fig. 1. Logarithm of the texture parameter τ estimated using SIRV model (a). Hierarchical segmentation (b). TSX data
2009-01-06. Argentière glacier.

3.2. Bayes Inference for Flow Model Constraint

In the context of geophysical objects motion, a priori ow model can be combined with the similarity measure to derive the

displacement eld. According to the Bayes’s rule, the problem formulation becomes:

p
(
τ i
y,−→v i|τ i

x

)
=

p
(
τ i
x|τ i

y,−→v i

)
p
(
τ i
y|−→v i

)
p (−→v i)

p (τ i
x)

(7)

Let vd
i and vaz

i be respectively the two components of the displacement vector −→v i along the distance and azimuth direction.

In (7), the prior term p (−→v i) can be rewritten as:

p (−→v i) = p
(
vd

i

)
p (vaz

i ) = ρi pρ (ρi) pθ (θi) (8)

where ρi and θi are the polar coordinates of the displacement vector −→v i. They are linked with the distance and azimuth

component by ρi =

√
vd

i

2
+ vaz

i
2 and θi = atan(vaz

i /vd
i ).

For example, when only one Line Of Sight (LOS) displacement projection is avalable, additionnal assumption need to be

taken into account for deriving the 3D displacement eld. In the context of glacier monitoring, these assumptions can be a ow

parallel to the glacier surface in the direction of the maximum downhill slope. Such information can be included in the proposed

prior model from eq. (7). The orientation angle θi is assumed to be normally distributed and has circular values between −π

and +π. The orientation angle follows the Von Mises distribution (also known as the circular normal distribution) which is the

circular analogue of the normal distribution [5]. Concerning the absolute value of the displacement ρi, no constraint is imposed.

ρi is therefore assumed to be uniformly distributed in the search neighbourhood.



(a) Simulated texture sampled from two
Fisher PDF. There is no motion between
master and slave images
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(b) Detection surfaces for the multiplicative
noised dataset: NCC, uncorrelated and correlated
Gamma ML, uncorrelated and correlated Fisher
ML.

Fig. 2. Displacement results on the synthetic dataset

4. PRELIMINARY RESULTS

To evaluate the potential of the proposed ML texture tracking algorithm, a synthetic dataset has been simulated. This dataset is

composed by two areas (Fig. 2(a)). The border and the center are respectively generated from two Fisher PDFs. The algorithm

is executed with a sliding rectangular window which matches exactly the center area.

Detection surfaces with the normalized cross-correlation coef cient (NCC), the ML texture tracking algorithm with Gamma

and Fisher PDFs for both uncorrelated and correlated texture between images are shown in Fig. 2(b).

Fig. 3. Displacement estimation over a crevasse area on the Argentière glacier using a 64 × 256 pixels sliding window. Dis-
placement eld in LOS (left) and orientation map (right). Dual-pol TSX data, 2009-01-06 / 2009-02-08.

An application of the ML texture tracking algorithm on the Argentière glacier (Mont Blanc massif, France) is exposed in

Fig. 3. Further results and discussions on shift estimation will be added in the nal version of the paper. Displacement results

with RADARSAT-2 quad-pol data will also analyzed on the whole glacier surface.
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