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INTRODUCTION

This work is an evaluation, to which degree geological information can be obtained from modern remote sensing 

systems like the multispectral  ASTER or  the  hyperspectral  Hyperion sensor for  a  volcanic  region like  Teide 

Volcano (Tenerife,  Canary  Islands).  To  account  for  the  enhanced  information content  these  sensors  provide, 

hyperspectral analysis methods, incorporating for example Minimum Noise Fraction-Transformation (MNF) for 

data quality assessment and noise reduction as well as Spectral Angle Mapper (SAM) for supervised classification, 

were applied. Ground Truth reflectance data were obtained with a FieldSpec Pro measurements campaign conducted 

during later summer of 2007. 

GEOLOGICAL SETTING OF THE STUDY AREA

The Canarian Arcipelago is made up of seven islands that represent different stages of geologic evolution [4]. 

Tenerife is the central island of archipelago and has developed the complex formed by the rifts and Teide-Pico Veio 

(T-PV) (Lat 28° 16' 30" Lon -16°38' 42" ) stratovolcanoes that reach a height of 3718m, 7500 above the ocean floor. 

It is an active shield though quiescent volcano (http://en.wikipedia.org/wiki/Volcano) that last erupted in 1909.

The sub aerial history of the island began in the late Miocene Plio-Quaternary, post-shield volcanism on Tenerife 

and has been characterized by the cyclic development of petrologically evolved eruptive centers. The most recent 

eruptive cycle has produced the twin strato-volcanoes Pico Teide (PT) and Pico Viejo (PV), and numerous flank-

vent systems, whose products collectively form the PT/PV formation [1]. Like previous cycles, PT/PV volcanism 

has involved central activity and persistent eruptions from prominent rifts. The recent output of the central part of 

the system includes significant volumes of photolytic magmas.

REMOTE SENSING DATA AND PREPROCESSING

The multispectral 'Advanced Spaceborne Thermal Emission and Reflection Radiometer’ (ASTER) onboard the 

TERRA satellite has three bands in the VNIR (15 m) and six bands in the SWIR (30 m) wavelength region 



(Fujisada, 1995). In particular, the SWIR bands were intended for the discrimination of minerals or rock types. For 

the spectral analysis, AST_07 reflectance product scene (‘Surface Reflectance’) from April 4, 2007 was acquired 

[2]. The preprocessing of the ASTER data comprised the resample of VNIR bands to 30 m spatial resolution and the 

combination of the VNIR and SWIR instrument data to a 9 bands imagecube. 

The Hyperion sensor, onboard NASA's EO-1 platform, is the first spaceborne imaging spectrometer covering the 

wavelength region from 0.4 to 2.5 m with 220 bands of 10 nm spectral resolution and 30 m spatial resolution. For 

the current study, L1R-Data ('at-sensor radiance') of November 13, 2003 was acquired. Due to signal-to-noise issues 

and other radiometric detractions only 198 bands are calibrated in this data product (for further details see [10]). As 

a result, only a subset of 196 bands, still containing bands with radiometric interferences, was maintained for further 

analysis. We applied a scaling factor to convert dataset in radiometric units, georeferenced data from ASTER image 

and finally computed calibration in reflectance using ENVI’s Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) [6].

METHODS

Due to the increased number of bands hyperspectral sensors like Hyperion or even modern multispectral sensors 

like ASTER provide, new analysis methods have become available in recent years [9] [5] [11]. To account for the 

improved information content of the new generation sensors, hyperspectral analysis techniques were chosen for the 

study for both datasets. These methods are based on the fact that every material exhibits a unique spectral signature 

in the electromagnetic spectrum. If sufficient bands are available in the remote sensing data, these signatures can be 

reconstructed. Thus, for mapping the surface composition, image derived reflectance spectra of the pictured earth 

surface are compared to known reference spectra of materials, also referred to as endmembers [3]. Endmembers can 

be  obtained  from different  sources  like  field  measurements,  spectral  libraries  (e.g.  ASTER  spectral  library: 

http://speclib.jpl.nasa.gov) or  from the  image data  itself.  In  the  latter  case,  surface type  identification can be 

achieved e.g. by comparing the image spectra with spectra of known areas or with library spectra. 

To evaluate the selected methodology and the classification results that can be achieved with ASTER and Hyperion 

data, two different methods for the selection of endmembers were applied in this study. The first method is mainly 

based on the 'Spectral Hourglass' processing scheme (Kruse et al. 2003) which is implemented in the Software 

ENVI (Research Systems Inc. 2005). This Procedure includes the generation of Minimum Noise Fraction-Images 



(MNF) for data dimensionality estimation and reduction by decorrelating the useful information and separating 

noise [7], Pixel Purity Index-Mapping (PPI) for the determination of the purest pixels in an image (as potential 

endmembers) utilizing the (uncorrelated) MNF-images and finally the extraction of endmembers (referred to as n-

D-endmembers in the following) utilizing the n-Dimensional-Visualizer tool (n-D-Vis). The extracted endmembers 

were  then  compared to  known spectra  from spectral  libraries  for  identification.  Subsequently,  an  alternative 

endmember selection was performed with ground truth data from campaign conducted during last summer 2007. In 

this case, locations regarded as representative for a surface type, were marked as Regions-of-Interest (ROI) in the 

ASTER and Hyperion images as sources for the extraction of endmembers as well (ROI-endmembers). 

For the mapping of the surface composition the Spectral Angle Mapper (SAM) was chosen. SAM is a physically 

based classification algorithm that compares the spectral similarity between surface reflectance image spectra and 

reference spectra, treating them as vectors in a space with the dimensionality equal to the number of bands [8]. 

Image spectra are assigned to the reference spectrum class that yields the smallest calculated angle. 

RESULTS AND DISCUSSION

Results showed that the endmembers derived with the Spectral Hourglass methodology were not able to reveal the 

information content of both (ASTER & Hyperion) datasets. Therefore, this we concentrated on the analysis results 

using the roi-endmembers. 

The classification results show that detailed information can be extracted from the data, which were compared with 

the Geological Map of Teide crater. Regarding the data quality, the analysis revealed that the Hyperion scene was 

strongly affected by system induced radiometric interferences. As a result, a considerable amount of bands had to be 

discarded to allow satisfying results. Therefore, although similar surface types were discriminated with the ASTER 

and the Hyperion results, the ASTER data allowed a more detailed classification of the surface composition of the 

study area however SAM classification is not be able to distinguish the differentiated lavas characterizing the Teide 

crater. In the future we intend to improve analysis using methods of classification like Support Vector Machine 

(SVM).
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