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1. INTRODUCTION

This paper describes parallel implementation of unmixing algorithm for a recently developed linear mixture model, variable-
endmember linear mixture model (VELMM) [1]. The model has been developed to retrieve two independent biophysical
parameters, namely, leaf area index (LAI) and fraction of vegetation cover (FVC) from remotely sensed surface re ectance.
Since the model consists of a linear sum of two nonlinear functions, the unmixing algorithm involves a constrained optimization
process which takes a considerable computation time [2, 3]. For the purpose of parameter retrieval from satellite images,
computation cost becomes impractically large (nearly a week by a workstation of decent speci cation), since this unmixing
algorithm should be applied to all the pixels one by one. In order to routinely use the algorithm, its cost must be dramatically
reduced, where parallel implementation plays an important roll [4, 5, 6, 7, 8, 9, 10] as one realistic solution.

The objectives of this paper are

1. to speed up the parameter retrieval by implementing the unmixing algorithm onto a parallel machine (distributed memory
multi-core system, using up to 256-core simultaneously),

2. to investigate parallel ef ciency of the algorithm as a function of number of core used as well as task-parallel strat-
egy/scheme (how to distribute tasks among different nodes, cpus, and cores over the system), and

3. to discuss applicability of our implementation strategy, in general, to pixel-based parameter retrieval from spectral re-
ectance data by environmental satellites.

2. VARIABLE-ENDMEMBER LINEAR MIXTURE MODEL

Unlike the standard linear mixture mode (LMM), variable-endmember LMM (VE-LMM) [2, 3, 11, 12] is to take into account
variability of endmember spectra within a class. Our VE-LMM assumes two classes (vegetation and non-vegetation) with four
independent parameters in the model. The re ectance spectrum from a target pixel ρ̂ρρ is modeled by mixing two spectra of
variable endmember, rvrvrv(p1) and rsrsrs(p2) as

ρ̂ρρ(ω1, ω2, p1, p2) = ω1rvrvrv(p1) + ω2rsrsrs(p2) (1)

where ω1 and ω2, are the weights of the endmembers that represent fractions of area covered by green vegetation and non-
vegetation, respectively. These two parameters are constrained into unity, ω1 + ω2 = 1 in this study. The other parameters,
p1 and p2, are related directly to the endmember determination of the two classes: For vegetation endmember, leaf area index
(LAI) is chosen for p1, and for non-vegetation endmember, re ectance of red band is chosen as p2 to represent soil brightness.

In the model, the spectrum of each class varies continuously along with a single line in a re ectance subspace (Fig. 1). A
set of spectra were chosen from actual satellite images and radiative transfer models by xing soil brightness (constant soil-
brightness line). While, endmember spectrum of non-vegetation class is chosen from a group of spectra that forms a soil line
(amount of vegetation is xed at zero.) By setting such constraints, re ectance of each endmember forms a single curve in
re ectance subspace (Fig. 1).



Fig. 1. Illustrtion of VE-LMM in re ctance subspace

3. UNMIXING ALGORITHM

A suitable pair of endmember spectra are chosen numerically by unmixing the model out of these in nite number of endmember
spectrum, which allows us to determine corresponding amount of biomass as a continuous variable (in stead of discrete one) in
addition to a fraction of vegetated area as a weight of vegetation endmember.

Using the unity constraints explicitly in the model equation, three parameters are left undetermined. The determinations
of those three are done from the information of observed re ectance spectrum, represented by a vector ρtρtρt. The following cost
function is de ned as a difference between ρtρtρt and ρ̂ρρ,

h(ω1, p1, p2) = ||ρtρtρt − ρ̂ρρ(ω1, p1, p2)||2. (2)

The three parameters are determined by nding a set of parameters which minimizes the above cost function. For the solutions
of the above optimization problem, a function of Quasi-Newton method provided in the numerical library of MATLAB was
employed. One example of such a process is shown in Fig. 2. In the gure, the vector of initial guess is updated after each
iteration and then nally reached to the global minimum which gives the solution to the problem. Therefore, the target of
parallel implementation is mainly this part of the algorithm.

4. PARALLEL IMPLEMENTATION STRATEGY

Since the parameter retrieval of each pixel is totally independent of the other pixels, the computation for one pixel can be
assigned to a single core independently. In a distributed memory parallel environment with N processing units, it is possible
to perform simultaneous retrievals from N pixels. This strategy is illustrated in Fig. 3. The detailed explanation of the
implementation will be explained in the conference.

5. PRELIMINARY RESULTS

A satellite image by Landsat7-ETM+ sensor was used to investigate parallel ef ciency of the unmixing algorithm. Parallel
computation was performed on a distributed memory system (cluster system) consisted of 32 blade computers equipped with
two quad-core CPUs on each blade, hence total of 256 cores can be used in parallel. (The CPU is Xeon 5570, 2.93 GHz.)
The algorithm is written using MATLAB functions and implemented in the system on STAR-P environment. To compare
computation time with a stand-alone machine, we run the same code on a workstation of similar speci cation (Xeon 5160, 3.00
GHz).

We compared the performance with different image/data size of 1000 by 1000, 3000 by 3000, and 6000 by 6000. The
results were summarized in Table 1. The cluster machine runs the code nearly 100 times faster at the full size of the image,
although the computation time by the workstation is an estimation from the case of smaller size of image. Further results and
discussions will be presented at the meeting.



Fig. 2. Example of optimization process by unmixing algorithm

Fig. 3. Illustration of parallel implementation strategy

Table 1. Computation time and parallel ef ciency of unmixing algorithm
Data size 1000×1000 3000×3000 6000×6000

Workstation with single CPU 4.5 h 38.2 h 7 days (estimated)
Parallel machine with 256 cores 0.06 h 0.45 h 1.5 h

Ef ciency ×75 ×85 ×112
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