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1. INTRODUCTION

In hyperspectral supervised target detection, one of the most widely used filters is the MF ([1]):

y = DMF (x) = (μ0,t − μ0,b)
tΓ−1x (1)

In the case of underwater target, the measured spectrum is considerably distorted by the water column. So,

it would be interesting to insert a bathymetric model in the expression of the MF, in order to correct these

spectral distortions.

Firstly, we will present the bathymetric model of reflectance, to insert it in the filter expression. Then, we

will compare this new filter with classical filters and we will study the influence of estimation errors on

model parameters, on detection.

2. BATHYMETRIC MODEL OF REFLECTANCE

Various models have been developed to build subsurface reflectance from bottom reflectance and water

constituents. The most common has been proposed by Maritorena et al. [2]:

rrs(λ) = rrs,∞(λ)(1− e−2k(λ)H) +
rB(λ)

π
e−2k(λ)H (2)

where rrs,∞(λ) represents the subsurface remote-sensing reflectance over an optically deep water column,

rB(λ) the bottom albedo, k(λ) the attenuation coefficient and H the depth.

rrs,∞(λ) and k(λ) depend on the water quality through absorption and backscattering coefficients, and

therefore, through three main optically active constituents: phytoplankton pigments, gelbstoff (or CDOM)

and non algal particles. In [3], Brando et al. express these coefficients as the sum of their contributions as
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Fig. 1. ROC curves for simulated data (target=galvanized metal): a) Pure water (H=2m), b) Pure water
(H=50m), c) Pure and turbid water (H=11m).

following:

a(λ) = aw(λ) + Cϕa
∗
ϕ(λ) + CCDOMe−SCDOM (λ−λ0) + CPNAa

∗
PNA(λ0)e

−SPNA(λ−λ0) (3)

bb(λ) = bb,w(λ) + Cϕb
∗
b,ϕ(λ1)

(
λ1

λ

)Yϕ

+ CPNAb
∗
b,PNA(λ1)

(
λ1

λ

)YPNA

(4)

where the index w is related to pure water, ϕ to phytoplankton, CDOM to gelbstoff and PNA to non algal

particles. Reference wavelengths are fixed: λ0 = 440nm and λ1 = 542nm.

Then, rrs,∞(λ) and k(λ) depend only on a(λ) and bb(λ) ([4],[5]).

3. DEVELOPMENT OF THE BATHYMETRIC MATCHED FILTER

The eq. 2 can be written in the following matrix form for every wavelength in the VIS/NIR range:

ρ = Kρ0 (5)

where ρ = rrs − rrs,∞, ρ0 =
1
π rB − rrs,∞, K = diag(e−2k(λ1)H , ..., e−2k(λL)H) and L is the number

of wavelenghts. We consider the spectral vector ρ as a gaussian random vector with mean μ � E(ρ) and

covariance matrix Γ � E [(ρ− μ)(ρ− μ)t].

Then, assuming the background and the target have the same covariance matrix, we can develop the LRT

(Likelihood Ratio Test) to obtain the final expression of the bathymetric matched filter (the index t means

target, and b means bottom).

y = Dbathy(ρ) = (K−1ρ)tΓ−1
0 (μ0,t − μ0,b) (6)



4. RESULTS

4.1. Known parameters

Fig. 2. ROC curve for real data (H=0.32m)

Our algorithm has been tested on both simulated and real

data. The wavelength range is fixed at 400-700nm. The bot-

tom is built from a random linear mixture of quartz, feldspar

and mica, whereas target spectra are chosen from the USGS

spectral library. Once attenuated by the water column, a

white noise (σ=0.02) is added to model the sensor noise.

We compare the bathymetric filter with two versions of the

classical MF given by eq. 1. The first version called MF

UW, is obtained estimating the covariance matrix with the

bottom data ρ0, whereas the second one called MF AW is

implemented estimating the covariance matrix with the sub-

surface data ρ. Results are shown in Fig. 1: in pure water,

bathymetric MF can detect up to 50m with a probability of

detection (PD) of 0.5 for a probability of false alarm (PFA)

of 10−3. For very turbid waters, it also overcomes classical filters detecting galvanized metal over 11m.

ROC curve in Fig. 2 is obtained from real data (H=0.32m), considering the employed port water as pure

water (for such shallow areas, the attenuation is mainly caused by pure water). Therefore, we can confirm

the performances presented previously in the simulations.

4.2. Influence of parameters estimation errors on detection abilities

Fig. 3. Estimation error on depth against estima-

tion error on Cϕ, CCDOM and CPNA (H=10m)

Some parameters of the eq. 6 can be unknown: usu-

ally, mean μ and covariance matrix Γ are estimated

with their ML estimates ([1]). The coefficients a(λ)

and bb(λ) are supposed to be constant in the whole

area so they can be measured once. But, it would be

interesting to estimate depth, which is more difficult

to measure everywhere in the scene. For shallow wa-

ters, the ML estimate is very precise, no matter how

the water is. For deeper waters, the influence of con-

centrations is greater, and the estimation error on H

can be studied against the estimation errors on the

three concentrations (see Fig. 3). The estimation of

H is not highly sensitive against Cϕ and CPNA, but



Fig. 4. ROC curves plotted with different erroneous values of Hf in the filter. True depth is 13m.

a relatively precise estimation of CCDOM is needed to keep a good estimation of H and therefore, a good

detection rate. Indeed, with a 50% error on the estimation of H, the PD is reduced of 0.07 for a PFA of 10−3,

whereas it’s reduced of 0.3 with a 90% error (see Fig. 4).

5. CONCLUSION

We developed a new version of the MF which outperforms classical MF for underwater target detection. In

simulations, bathymetric MF detects the studied target up to 50m in pure water, and up to 11m in turbid

water. It also turns out that it works better on real data. If H is unknown, it can be ML-estimated, and

a 50% error does not affect much the detection performances. In future works, we will also estimate the

concentrations, to obtain an autonomous system for underwater target detection.
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