
ONE RASTERIZATION APPROACH TO SPATIAL PREDICATE

Hui Dong, Zhenlin Cheng, Yanwei Zhao, Jinyun Fang

Institute of Computing Technology, Chinese Academy of Sciences
Graduate University of Chinese Academy of Sciences

1. INTRODUCTION

The description and representation of spatial relation/spatial predicate, which claims the boundary between GIS

and Management Information System (MIS) and Computer Aided Design (CAD), is the kernel of GIS[1]. Spatial

predicate is the integrated component of spatial filters specified in Web Feature Service(WFS) protocol.

Computational geometry approach to spatial predicate implementation has the advantage of high precision with

the cost of memory usage and CPU time consumption. Slow response time is not desirable. In fact, there are many

scenarios and applications where a fast answer with desired accuracy is more preferable than slow exact answer

because getting useful data for decision making in a timely manner is becoming crucial for increasing in business

competitiveness[2]. Furthermore, Internet map service is proliferating and becoming prominent in spatial decision

support applications. But, the time and space complexity of computational geometry approach to spatial predicate

is not affordable or scalable for massive concurrent sessions. In fact, in modern internet map server, the image

tiles is pre-rendered or dynamically rendered on initial client request. In such scenarios, the cached image tiles are

not only the visualization of vector data but also the rasterization approximation the exact geometry. Such images

can provide more precise approximation than minimum bounding rectangle (MBR) and can be utilized as the

basis of spatial predicate implementation.

Reference [3] presents one kind of filter: the raster approximation of polygons, named four color raster signature

(4CRS). This approximation can be used to test if two polygons overlap. The 4CRS is used for representing

polygons, and it is a small bit-map using four colors. Each color represents an intersection type between the object

and the cell: empty(The cell is not intersected by the polygon) weak(the cell contains an intersection of 50% or

less with the polygon) strong(the cell contains an intersection of more than 50% and less than 100% with the

polygon) and full(the cell contains an intersection of 100% with the polygon). Only strong strong is determined

situation(overlap) and weak weak strong weak and weak strong are uncertain situations needing further

calculation. In the calculation of the approximate area and confidence interval, it uses mathematical expectation

and probability formula to estimate which may not be suitable for the real data.

In this paper, we propose on improved method, combined with the rendering engine, which can enhance the filter

accuracy and avoid the above drawbacks of 4CRS. This proposal can record coverage area of border grid cells

accurately based on subpixel accuracy, so it can determine whether two polygons overlap through judging

coverage area of the corresponding grid cells. For example, given that coverage area of the first layer is 49% and

that of the second layer is 52% in the same grid position, it can determine that two layers overlap in this cell

because the coverage area sum is more than 100%. But it is uncertain situation if using 4CRS because it can not

handle weak strong condition (not to mention weak weak situation). At side effects, the rendering engine can

preserve feature attribute information in the cell structure which offers more useful hints for map overlay

(polygon IDs etc.).

2. RASTER SIGNATURE GENERATION

There are two key steps: (1) raster signature generation (2) to implement spatial predicate utilizing raster signature.

The core idea for raster signature generation is using the subpixel accuracy of Bresenham algorithm[4],which is

based on the error discriminate to generate line. The difference with traditional Bresenham is subpixel accuracy,

which divides a pixel into N * N subpixels. In this paper, N is 256 which can meet the most requirements of real

world vector data visualization.

First, convert vector points through coordinate conversion pipeline. Vector point coordinates are multiplied by

256 (this operation is equivalent to shift the coordinates of binary representation left eight bits), which has the

advantages of considering the influence of fraction part to the pixel weights(cover). It can computed easily with

subpixel accuracy[5].

Outline scanning and rendering for filling polygons is the core of algorithm. When scanning, saves the grid cell

weights(cover) and area of border grid cells. Fy--one value between 0 and 255, is the fraction part of the origin

vector coordinates. The cover and area of grid cell influenced by the line can be calculated easily and the formula

is described as following:

cov 2 1er fy fy (1)

(2 1) covarea fx fx er (2)

When scanning outline of polygon is completed, it will render filled polygons. Firstly, sort all grid cells of border;

Secondly, scan every line from staring position to end position. At the same time, filling the rendering buffer

according to the coverage area of grid cell. Each cell span has initial X, length, and an array of bytes that

determine the alpha-values for each pixel.

It is easy to figure out that the area which is obtained in the process of outline scanning is not the final area of cell

because we don’t know whether it is the interior or exterior of polygon when scanning the outline, so the actual

area can only be obtained when rendering. Computing the actual area of each grid cell is: accumulating cover and

area in the same grid cell and, recording the sum as alpha. Below is the pseudo code:

 calculate_alpha
 {

poly_base_shift = 8; aa_shift = 8;
 aa_num = 1 << aa_shift; aa_mask = aa_num - 1;
 aa_2num = aa_num * 2; aa_2mask = aa_2num - 1;

int alpha = ((cover << (poly_base_shift + 1)) - area)>> (poly_base_shift*2 + 1 - aa_shift);
if(alpha < 0) alpha = - alpha;
alpha &= aa_2mask;
if(alpha > aa_num) alpha = aa_2num - alpha;
if(alpha > aa_mask) alpha = aa_mask;

return alpha;
 }

3. IMPLEMENTING SPATIAL PREDICATE USING RASTER SIGNATURES

After the above steps the raster signature is saved in the form of matrix. Each grid cell structure includes polygon

ID this cell belongs to and coverage area. Location is inherent in the storage structure, namely, implied by row

and column number of the grid cell rather than through the use of explicit spatial coordinates. When

implementing spatial predicate, we only need to find the specified grid cell and examine the polygon ID this cell

belongs to and coverage area to get judgment and return qualified polygon IDs. We will illustrate this method by

taking the predicate of overlap and contain for example.

3.1. overlap

Given that there are two input feature sets-A and B, judge whether the two layers overlap or not. If it is

true(regarding the overlap possibility as filtering condition, overlap possibility is more than 60% is considered

overlapping), return the qualified polygon IDs. The pseudo code is listed as followings..

for(loop y-scanline in the envelope){
for(loop x-scanline in the envelope) {

if(the (x,y) grid is not empty in two layers){
cellarea1 id1 are coverage area and polygon ID of layer A respectively;

cellarea2 id2 are coverage area and polygon ID of layer B respectively;
result set maintains the overlap pairs of polygon IDs id1 and id2 and overlap possibility

pvalue=undetermined value/ undetermined cellCount
 if(overlap pairs are in the result set && it is not sure whether overlap or not){
 if(cellarea1+cellarea2 >= 100%)

 it shows two polygons overlap in the current cell update result set
else{

 value += cellarea1*cellarea2; count++;
 }
 }else{ // overlap pairs are not in the result set

if(cellarea1+cellarea2 >= 100%)

 it shows two polygons overlap in the current cell update result set
else{

value = cellarea1*cellarea2; count = 1; insert to result set id1 , id2 and pvalue
 }
 }
 }
 }
}

3.2. contain

Given that there are two input feature sets-A and B, judge whether any polygon in A(named pa) contains any

polygon in B(named pb) or not. If it is true, return polygon ID pair(pa, pb). As illustrated in the figure below,

layer A is in bold lines and layer B consists of four polygons.

There are three steps: (1) obtain the candidate set result1. Every polygon in this set belongs to B and the coverage

area of each grid cell is less or equal to the counterpart of A. In this example, polygon 2 3 and 4 in layer B is

qualified while polygon 1 in B is excluded because coverage area. (2)compare the envelope of polygons of result1

to that of layer A, remove the polygons whose envelope is bigger than that of layer A and insert the remain to

candidate set result2(polygon 2 and 3 in this example). (3) compare the envelope of polygons of result2 to that of

polygon(named pa) in A, remove the polygons whose envelope is bigger than pa and insert the remain to result set

result3(polygon 2 in this example).Result3 is the final result set and that is layer A contain polygon 2 of B.

4. REFERENCES

[1] Longley P, Goodchild M F, Maguire D, et al. Geographical Information Systems: Principles, Techniques, Management,
and Applications. 2nd ed. New York: Wiley. 2005. 97-99.
[2] Leonardo Guerreiro Azevedo, Geraldo Zimbrão, and Jano Moreira de Souza, “Approximate Query Processing in Spatial
Databases Using Raster Signatures,” VIII Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November
19-22, 2006, INPE, p. 3-17.
[3] T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger, “Multi-step Processing of Spatial Joins,” In Proceedings of the
1994 ACMSIGMOD Conference, Minneapolis, USA, May 1994.
[4] Bresenham J E .Algorithms for computer control of a digital plotter[J]. IBM Systems Journal,1965,4(1):25—30.
[5] http://www.antigrain.com/doc/index.html

