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1. INTRODUCTION

Random Noise SAR [1] is a kind of radar imaging with noise or noise-like transmit signal, usually the transmit signal can be

regarded as additive white gauss noise (AWGN). Compressed sensing (CS) [2] describes a method for reconstructing sparse sig-

nals from relatively few measurements, typically well below the number expected from the requirements of the Shannon/Nyquist

sampling theorem. In CS theory shows that the measurement matrix whose entries are drawn independently from certain dis-

tributions satisfies the Restricted Isometry Property (RIP) [3] very well, and guarantees exact recovery of the targets which are

sparse or sparse in any basis with high probability. In this paper we analyzed the RIP of the measurement matrix in the random

noise SAR system, and we have presented some random noise SAR simulations via compressed sensing.

2. PRELIMINARIES

In many cases, we are interested in signals x which is sparse of N complex values. Thus, we assume that only k < N entries are

significant in magnitude in signal x. In this case compressed sensing methods deal with recovering the k most significant entries

of using the measurements given by Φx, where Φ the measurement matrix satisfies the RIP. We first recall some definitions:

Definition 1 [4] The discreteLP norm of any array A is defined as:

‖A‖p ≤
⎛
⎝N−1∑

j=0

|A(j)|p
⎞
⎠

1
p

Definition 2 [3] A matrix Φ satisfies the RIP(N,K, δ) of order K with constant δ ∈ (0, 1) if

(1 − δ) ‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ) ‖x‖2
2

Hold for all x such that‖x‖0 ≤ K.

Given a matrix Φ satisfies the RIP(N,K, δ) with δ ∈ (0, 1) sufficiently small, a near optimal K- term approximation can be

obtained for Φx using linear programming [5], or regularized orthogonal matching pursuit (ROMP) variants [6].

Definition 3 [4] The Hadamard Product of an M × N matrix A = [aij ] and an M × N matrix B = [bij ] is record as A � B,
it is also an M × N matrix, it is defined as:

A � B = [aijbij ]

Lemma 1 Let Φ by a M × N matrix with elements drawn i.i.d according to N(0, 1) and let A ∈ CM×N be a matrix with
normalized columns. Furthermore, let u ∈ CN is an arbitrary vector with N entries. Let δ ∈ (0, 1) be given. Then the matrix
Ψ = A � Φ satisfies

E
(
‖Ψu‖2

2

)
= ‖u‖2

2

and
P

(∣∣∣‖Ψu‖2
2 − ‖u‖2

2

∣∣∣ ≥ δ ‖u‖2
2

)
≤ 2e−Mδ2/8



Lemma 2 Let Φ by a M ×N matrix with elements drawn i.i.d according to N(0, 1) and let A,B ∈ CM×N are matrices with
normalized columns. Furthermore, let x = [ u v ] ∈ C2N is an arbitrary vector with first N entries is u and the last N entries

is v. Let δ ∈ (0, 1) be given, then the matrix Ψ = 1√
2

[
A � Φ
B � Φ

]
satisfies

E
(
‖Ψx‖2

2

)
= ‖x‖2

2

and
P

(∣∣∣‖Ψx‖2
2 − ‖x‖2

2

∣∣∣ ≥ δ ‖x‖2
2

)
≤ 2e−Mδ2/4

Theorem 1 Let Φ by a M × N matrix with elements drawn i.i.d according to N(0, 1) and let A ∈ CM×N are matrices with
normalized columns. If

M ≥ C1K log
(

N

K

)

Then the matrix Ψ = A�Φ satisfies the RIP of order K with probability exceeding 1−3e−C2M , where C1 and C2 are constants
that depends only on the desired RIP constant δ.

The proof of these conclusions can be completed with reference to the ralated works in [7],[8],[9].

3. RANDOM NOISE SAR

3.1. Random Noise SAR Model

An elementary block diagram of a random noise SAR system model based on compressed sensing is shown in Figure 1. There

are mainly three ways used in the A/D sampling, they are random sampling, random demodulation [10], and downsampling.

Many reconstruction algorithms can be used in compressed sensing processing, such as linear programming [5], ROMP [6] and

the laplace method [11].
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Fig. 1. The Random Noise SAR Model Based on Compressed Sensing

For a relatively short correlation time, the random noise SAR received signal model can be simplified to the form:

xR(t) =
NT∑
i=1

AixT (t − 2Ri(t)
C

)e−j 4π
λ Ri(t) + ξt(t)

where NT is the number of sparse targets, xT (t) is the transmit signal, C is the speed of light, λ is the wavelength of the

transmit signal, Ai denotes the complex amplitude of the i−th targets echo, Ri(t) =
√

R2
i

+ (V t)2 its range ( V is the speed

of the random noise SAR platform ) and ξt(t) is AWGN. For simplicity, only noiseless condition is concerned in our discussion.



3.2. Application of Compressed Sensing

The Radar Cross Section (RCS) used in random noise SAR is a sampled 2D spatial spectrum with the size K × L. The RCS

σ[m,n] of the target scene can be converted into a very long vector by stacking its columns. That is,

σ =
[

σT
1 · · · σT

L

]T

where

σn =
[

σ[1, n] · · · σ[K,n]
]T

Similarly, let ŷ be vector constructed by M × N received data the same way,

ŷ =
[

ŷT
1 · · · ŷT

N

]T

where

ŷn =
[

ŷ[1, n] · · · ŷ[M, n]
]T

The relation between ŷ and σ is given by

ŷ = Φσ

where Φ is a MN × KL matrix whose i, j−th element is

[Φ]i,j = xT (ti − 2Rj(ti)
C

)e−j 4π
λ Rj(ti)

In random noise SAR, the transmit signal xT (t) is AWGN, so we can see Φ as a random matrix with elements drawn i.i.d

according to N(0, σ2). For simplicity, we can let σ = 1, and we have that ‖exp(−j4πR(t)/λ)‖2
2 = 1. If we let A = Φ/

√
MN ,

then A satisfies the conditions stated in Theorem 1, using the Theorem 1’s result, we know that the measurement matrix satisfied

the RIP very well, and can be reconstructed by compressed sensing.

4. SIMULATION RESULT

In this section, we provide some simulation results to illustrate the claims of Theorem 1. The simulation is to show that the

sparse target scene can be exactly recovered from random noise SAR echo by compressed sensing. The results are shown in

Fig 2.
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(a)The Truth Targets

CS Reconstructed
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(b)Recovered by compressed sensing

Fig. 2. Signal recovery from noise radar echo.

In Figure 2, (a) is the target scene of size 31 × 31 who was generated at random with random magnitude between 0 and 2 with

200 nonzero targets, (b) is the result recovered by compressed method with 30×30 echoes by row and column random sampled

from the 85 × 160 echo data using the laplace method [11], and its 2-norm relative error ‖x̂ − x‖2/‖x‖2 = 0.0125, sampling

rate η = (30 × 30)/(85 × 160) = 0.0662 ,the result show that compressed sensing can be successfully used in random noise

SAR signal processing.



5. DISCUSSION

In this paper, we have studied the problem of recovery the sparse targets from random noise SAR echo. We have proofed that

the random noise SAR measurements matrix satisfied the RIP very well with high probability, and our simulations demonstrate

that we can recover sparse signals exactly at the number of measurements required in the theory. The main result is that the

sparse or sparse in any basis targets can be exactly recovered from the random noise SAR echo with high probability. The result

can also be used in noisy condition. Some simulations in noisy conditions are still in processing.
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