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1. INTRODUCTION 

In order to analyze the hyperspectral data, it is necessary to unmix the mixed pixels into a collection of endmembers’ spectra 
and their corresponding proportions [1]. Independent Component Analysis (ICA) [2] is a useful technique to decompose 
mixed data into independent components, but it assumes that the original sources are statistically independent, which is not 
reasonable for hyperspectral unmixing. Besides, ICA assumes that the distributing regularity of the source is stationary, but 
the regularity of nature signal is usually variable. Therefore, in this paper we present a novel algorithm called as Constrained 
Independent Component Analysis (CICA), which can overcome these limitations by proposing two improvements. Firstly, 
according to the characteristics of hyperspectral images, we layout an Adaptive Probability Model (APM), which is capable 
of describing more than one probability distributions adaptively. Secondly, Abundance Nonnegative Constraint (ANC) and 
Abundance Sum-to-one Constraint (ASC) are added to ICA, generating a Constrained ICA algorithm. The goal of this method 
is to minimize the mutual information of abundances, at the same time with ANC and ASC satisfied. It means that we solve 
the unmixing issue by minimizing uncorrelation instead of pursuing independence.  

2. ICA FOR HYPERSPECTRAL UNMIXING 

Considering the Linear Mixture Model (LMM) [1] x As e , ICA can recovers abundance signal s  by linear transformation 
y Wx Us . W is gained by maximizing the independence between the components of y. Usually, mutual information 
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is a measure of independence. Minimizing I(y) yield the learning approach [3]-[5]: 
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where T
1 1[ ( ) / ( ),..., ( ) / ( ),..., ( ) / ( )] ,i i p pp y p y p y p y p y p yf(y)  is update factor, and ( )ip y is the derivative of ( )ip y .  

3. THE PROPOSED ALGORITHM 

3.1. Adaptive Probability Model  

( )ip y  can be approximated by Pearson mixture model [6] : 2 2
1( ) 2( )( ) (1 ) , , ,i i i i i i ip y a N a N where 2,N  

represents the normal PDF with mean and variance 2 . We design an Adaptive Probability Model (APM) in which 
parameters ia and 1( )i is automatically changed according to statistical characteristic of the data. Generally, the endmember is 
sparse since each material does not distribute over the whole imagery. For any endmembers’ abundance signals, the 
probability of its equaling to zero is not very small, which can be considered as function ( )ip y  taking peak value when 

0iy . So we set 2( ) 0i . In addition, i is not a critical parameter for APM, and it is set to 1/3 here. The learning rule of 
Eq. (2) becomes _ ( 9 ) ,T TAPMW I dy yy W  where 9 / /( ) exp( 9 4.5 ) ,1 1 1 1d μ 1 a a 1 μ y μ μ  I is the 
identity matrix, T

1(1) 1( ) 1( )[ ,..., ,..., ] ,i P1μ 1 is a vector of ones, and T
1 ,..., ,...,i Pa a aa . Now we determine ia and 

1( )i by analyzing the cumulants of the data. the mean, skewness and kurtosis of y can be computed by 
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where 2 2
2 1(1 ) .a a Therefore, ( ) 0ikurtosis y  if 0.5 3 / 6,  0.5 3 / 6 ,ia and ( ) 0ikurtosis y if 

(0,  0.5 3 / 6)   (0.5 3 / 6,  1).ia or So we calculate ( )ikurtosis y , and set ia =0.6443 if ( ) 0ikurtosis y , or set 

ia =0.8943 if ( ) 0ikurtosis y . After ia  is obtained, we calculate ( ),imean y  and set 1( ) ( ) / (1 ).i i imean y a   

3.2. Abundance Nonnegative Constraint  
 

In order to meet ANC, we design an ANC object function for the estimated abundance signal y of any pixel 
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where
 

( )f x  may be any function which can satisfy the qualification: ( ) 0  [0,  1]f x if x  and ( ) 0  [0,  1].f x if x
 
Here 

we choose 2 2( ) ( 0.5) 0.5 / 2 ,b bf x x b b . If 1b , calculating the natural gradient of _ ( )J ANC y   yields: 
 T T T_ _ ( ) / ,ANC J ANCW y W W W mx W W  (5) 

where the thi element of m is ( 0.5)  [0,  1],i i im y if y or 0im otherwise. 

3.3. Abundance Sum-to-one Constraint  
 

We give ASC objective function as 
2

1
_ ( ) 1 / 2

cP

i
i

J ASC y cy , (6) 

where c . We can choose 1,c  and the ASC update rule of W can be given under the gradient ascent rule 
T T T

1
_ _ ( ) / 1

p

i
i

ASC J ASC yW y W W W 1 x W W . (7) 

3.4. The procedure of Constrained ICA  

The whole objective function of CICA is 1 2( ) ( ) _ ( ) _ ( ).J I J ANC J ASCy y y y  Based on the above analysis, the 
update rule of W can be expressed as 

1 2_ _ _APM ANC ASCW W W W , (8) 
After obtaining W by Eq. (8), the abundance estimation is solved by y=Wx.  

 
4. CONCLUSION 

In this paper, we proposed a new approach based on ICA for hyperspectral unmixing. Generally, ICA cannot solve the 
unmixing problem well since the independence assumption violates ANC and ASC. Our algorithm overcomes this drawback 
by considering not only the independence of sources, but also the ANC and ASC of abundance. Standard ICA algorithms only 
consider independence as the object function, but the CICA performs otherwise. The CICA includes ANC and ASC constraint 
to accord with the hyperspectral-data reality, and it performs under a probability mode which is adaptive. The adaptive 
probability model is reliable and reasonable because it is designed based on the sparseness property of hyperspectral imagery. 
The experimental results on simulated images and real hyperspectral data show that the proposed method gives good results. 
Further, we should point out that the proposed CICA can separate different endmembers using very few iterations.  
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