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1. INTRODUCTION 

Electromagnetic scattering is fundamentally a vector process.  Therefore, to capture all the information 

from the scattered waves, the full polarization vector of the waves received by the radar should be 

measured.  Polarimetric SARs were first demonstrated in the early 1980s, and made their debut in space 

with the SIR-C/X-SAR mission in 1994.  By the end of the 1990’s several polarimetric airborne SAR 

systems were operating in the United States, Europe and Japan.  As of the writing of this paper, both the 

German TerraSAR-X (X-band) and the Japanese ALOS PALSAR (L-Band) space missions offer fully 

polarimetric data in experimental models.  This paper will provide an overview of the application of 

polarimetric SAR data to Earth remote sensing.  Here we will illustrate only few of the topics that will be 

covered. 

2. POLARIZATION SIGNATURES – A NEW PERSPECTIVE 

Polarization signatures [1-4] have become a standard way to visualize the information in polarimetric 

scattering.  The standard polarization signature plots the received power as a three-dimensional figure 

where the two horizontal axes denote the polarization orientation and ellipticity of the transmitted wave, 

respectively, and the strength of the received power is displayed in the vertical offset from the horizontal 

plane.  Often only the signature displaying the so-called co-polarized power, i.e. the case where identical 

polarizations are used for transmission and reception of the waves, is displayed.  Sometimes, however, 

both co-and cross-polarized (orthogonally polarized antennes used for transmission and reception) 

signatures are displayed. 

A new, and potentially more insightful, way of displaying these figures is introduced in [4].  In this 

display, the Poincare sphere axes are used to denote the polarization of the transmitted wave, and the 



strength of the receive power is displayed as the distance from the origin of the Poincare sphere for a 

given polarization.  Figure 1 shows the definition of the two types of signatures.  Figure 2 shows the 

power of the new 3-D signatures to visualize scattering matrices that represent orthogonal scattering 

processes. 

 

Fig. 1.  Standard (Left) and new 3-D (Right) co-polarization signatures of a trihedral corner reflector.   

 

Fig. 2.  Polarization responses of three scatterers:  trihedral corner reflector (left), dihedral corner reflector 

(middle) and dihedral corner reflector rotated by 45 degrees (right).  The scattering matrices of these three 

scatterers are orthogonal and represent eigenvectors in the Pauli basis.  The three signatures are identical, 

but rotated by 90 degrees relative to each other. 

 

3.  MODEL-BASED DECOMPOSITION OF SCATTERING 

Several groups have proposed ways in which to decompose polarimetric scattering into simpler scattering 

mechanisms.  Van Zyl et al [5] showed that some of the more commonly used decompositions suffer 

from a fatal flaw: they often result in negative powers assigned to some of the scattering mechanisms.  



They go on to show that a simple check would be to constrain the model based decomposition by 

insisting that for every decomposition step, the remaining covariance matrix must have non-negative 

eigenvalues.    For example, we can write the decomposition in the form 

 model remainderaC C C  (1) 

Here, the matrix on the left represents the measured covariance matrix and first term on the right 

represents the covariance matrix predicted by some model such as randomly oriented branches.  

Recognizing that the form of this covariance matrix may be different from the measured matrix, they add 

the second term, which will contain whatever is in the measured matrix that is not consistent with the 

model matrix.   They then determine the value of a to be the largest value that still ensures that the second 

matrix on the left will have non-negative eigenvalues 

Figure 3 compares the results of the constrained non-negative eigenvalue decomposition to that of 

the popular three-component model introduced by Freeman and Durden [6].  It is shown in [4] that the 

Freeman-Durden decomposition over-estimates the vegetation contribution by 10-20%. 

 

 

 

 

 

 

 

 

 

Fig.  3.  These images display the fraction of the observed total power that can be attributed to scattering 

from a uniformly randomly oriented layer of cylinders.  The image on the left follows the calculation 

proposed by Freeman and Durden [10], while the image on the right is calculated by requiring that the 

remaining eigenvalues not be negative.  On the average the image on the right shows about 10-20% lower 

values for the forested areas than the one on the left. 
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