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1. INTRODUCTION

For the purposes of target classification in remotely sensed hyperspectral imagery (HSI), an algorithm will typically analyze

spatial and spectral information from an observed image and compare this information to a previously learned (or known) target

concept or model. Typically during the learning process of a target model, model parameters are optimized using machine

learning techniques, given target and non-target signatures. In standard machine learning techniques, it is imperative that the

learning algorithms know the class labels of the training data. However, in remotely sensed hyperspectral imagery, images are

typically sensed from a distance which allows for the introduction of corrupting signals, image formation errors, spectral mixing,

and geo-registration (mapping from ground location to image location) errors. The result is data with uncertain class labels; an

issue that cannot be confronted using standard machine learning techniques. Furthermore (during testing), many classification

algorithms make assumptions about target and background areas which may also be confounded by this uncertainty.

Multiple instance learning (MIL) is a learning framework that attempts to combat these issues [1, 2], explicitly. Only

recently has MIL been used for HSI analysis [3]. In this work, Torrione et. al applied a unique interpretation of MIL to HSI

analysis, which differed from the standard MIL problem statement. In the following, RSF-MIL and MI-RVM are used to

learn a target emissivity signal for the purposes of landmine detection, which has not previously been done. These two MIL

approaches have the highest classification performance given benchmark data sets [4] and will help identify the benefits of using

MIL approaches for the purposes of HSI image analysis.

The remainder of this paper is organized as follows. First, MIL is discussed including Maron’s statistical development of

Diverse Density. Next, the HSI under test is briefly described and an intuitive reasoning behind an MIL solution is developed.

Then, the algorithms under test are detailed. Finally, experimental design, results and conclusions are detailed.

2. MULTIPLE INSTANCE LEARNING: ANALYSIS OF BAGS

In MIL, a learner is presented with sets of samples (refered to as bags); whereas in standard techniques, a learner is presented

with individual samples. Bags are labeled positive if there exists at least one sample that induces a target concept and are labeled

negative if every sample does not induce a target

Generally speaking, MIL approaches have two benefits over standard machine learning techniques. First, it has the ability

to learn target concepts when the labeling of the training data is uncertain. Second, it typically provides a set-based classifier,

thus a set of data can be classified rather than a single sample at a time, which is very useful in image analysis. In the following,

DD and RSF-MIL are reviewed and benefits of Multiple Instance (MI) approaches for image analysis are listed. The reader is

directed to the literature for a comprehensive review of MIL [2, 4, 1].
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2.1. Diverse Density

In standard DD approaches, a target concept, which is characterized by a feature vector t, is learned given positively and

negatively labeled bags, B+
i and B−

i , respectively.

t̂ = argmaxt

⎡
⎣
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⎤
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Assuming a Noisy OR-Gate model [5], the terms in (1) can be calculated in terms of the bags constituent samples Bij using (2)

and (3).
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Note (2) states that the probability a bag induces a target concept is equal to the probability that it is not the case that each
sample does not induce a target concept. Equation (3) states that the probability that a bag does not induce a target concept is
equal to the probability that each samples does not induce a target concept.

2.2. RSF-MIL

A more general MIL solution, Random Set Framework for Multiple Instance Learning (RSF-MIL) has recently been introduced

by the authors and used for feature learning in GPR image analysis [4]. RSF-MIL provides a random set-model to perform

analysis on bags. A random set Ξ is completely characterized by its capacity functional TΞ(X) ≡ P (Ξ∩X �= φ). The capacity

functional permits analysis on set values (bags), thus providing a solid mathematical framework for MIL.

The probability that an observed set, X, has a non-empty intersection with a random set,Ξ, is equal to the probability that it

is not the case that each sample, xp, has an empty intersection with the random set. Using this operator, similarities between

bags can be analyzed, models can be learned, and posterior probabilities can be calculated. Note formulations of random sets

that can be used in (4) provides a more general mathematical framework and solution than (2) [4].

TΞ(X) = 1 −
P∏

p=1

(1 − TΞ(xp)), where X = x1, x2, ..., xP (4)

2.3. MI-RVM

MI-RVM as developed by Raykar et al [6] uses a noisy-OR model with a logistic sigmoid, σ to calculate probabilities of

observed bags.
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In this model, the weight vector is modeled using a Gaussian prior. Optimization is performed using the Newton-Raphson

update. Feature selection is optimized using type II maximum likelihood method.

3. HYPERSPECTRAL DATA SET AND MIL

The classifiers under test were applied to AHI (Airborne-Hyperspectral-Imager) imagery [7]. AHI was flown over an arid site

at altitudes of 300 m and 600 m resulting in a spatial resolution of 10 cm and 15 cm, respectively. Each image contains 70

spectral bands after trimming and binning, ranging over LWIR wavelengths 7.88um 11.02um. Each image contains millions of

spatial pixels. Experiments are performed using the apparent emissivity of the observed spectra, which is calculated using the

well-known Emissivity Normalization method. Classification is done in the emissivity space to mitigate the effects of varying

spectra intensities, but may not account for other context-dependent characteristics.



The well-known RX algorithm was applied as a prescreener to identify areas of interest (AOIs), which were used to construct

HSI chips. The resulting HSI chips contained various anomalies which included targets and non-targets. Targets consisted of

areas of disturbed soil and various types of mines buried 10.2 cm deep or flush with the soil. Examples are shown in Figure 1.

There are a approximately 900 targets and 1,200 non-targets.
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Fig. 1. Examples of HSI chips showing variations of location, number, and shape of target signatures within an AOI. Note each

spatial pixel in each chip has a corresponding spectral vector; the spectral response for 9.4um is shown within the image.

In remotely sensed HSI analysis, a prescreener (simple anomaly detector) is typically run to identify AOIs. This lessens the

amount of imagery that a more complex detection algorithm will need to process, thus lessening overall computation time. In

many standard remote sensing image classifiers, target and background statistics are calculated and used for overall confidence

calculation. However, in these approaches target and background areas are assumed to be known and constant (as shown in

Figure 1), which may not be the case (see Figure 2).

In an AOI the observable evidence of a target may be highly variable. Errors in geolocation information and centering

the AOIs may lead to testing and training issues since the target may reside in variable spaces within the AOI, see Figure 1.

Furthermore, the number and shape of the exemplar target signatures may vary due to variable thermal characteristics, variable

target sizes, spectra mixing, and errors in image formation, see Figure 1.

These factors can confound learning and classification algorithms which rely on knowing the target and background areas,

a priori. However, these learning and testing conditions exactly fit the MI problem, where the shape, and number of target and

background signatures are explicitly assumed to be variable since analysis is performed using bags.

Fig. 2. Spatial assumptions made in standard matched filter, image processing algorithms as compared to MI approaches.

4. EXPERIMENTAL DESIGN, RESULTS AND CONCLUSIONS

Multiple Instance (MI) algorithms under test include RSF-MIL and MI-RVM. RSF-MIL and MI-RVM have the best reported [4]

classification results on Musk data sets (MI benchmarks)[8]. Results are compared to the Whiten-Dewhiten (WDW) transform,

developed my Mayer et al. [9], that uses target and background statistics of the training and testing data to calculate target

confidence.

Experiments were performed using crossvalidation at the image level, i.e., when classifying HSI chips from image i, op-

timization of the classifiers’ parameters (2) is done using only those HSI chips from images other than the image i. Note,

this decreases classification results since each image was observed in somewhat different contexts; however, this mimics the

real-world testing situation.



Each of the MI classifiers under test do not account for spatial information in their present form. Fourteen models were

constructed for the WDW algorithm and treated as different contexts. Rather than combining target and background statistics

into one model, multiple models were used and confidence was averaged over each model (this improved the classification

results). Also note that in WDW there are some spatial assumptions about target and background areas, so confidence values

were computed by averaging the confidence within the assumed target area.

In summary, WDW requires 1) prior knowledge during training of target and background models, 2) it requires a large

amount of training data and training parameters to model target and background space in high dimensions, 3) does not supply

feature selection and 4) does not supply a set-based classifier. Conversely, RSF-MIL and MI-RVM 1)do not require prior

knowledge during training target and background data, 2) do not require a large amount of training data and training parameters

to model target and background space in high dimensions, 3) supply a feature selection capability and 4) supply a set-based

classifier. Also, note that WDW incorporated spatial and contextual information, whereas, the MI approaches under test did not

make use of this information and outperformed WDW.

Future work includes the incorporation of spatial information into the MI framework, which should improve overall classi-

fication results of MI approaches.
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Fig. 3. ROC curve of classification rates.
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