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1. INTRODUCTION 
 
Waveform inversion is a potential tool for geophysics to identify the subsurface structure. The gradient-based 

waveform inversion algorithms have got some successful applications, but they are limited by the nonlinearity of 

the inverse problem and need a good guess for initial model. The global optimization methods were first used by 

earth scientists more than 30 years ago. Their advantage is that they needn’t to compute the gradient and can work 

well without good guess of initial model. Evolutionary algorithms (EA) are a set of global optimization methods 

which seek optimal solutions by mimicking the seemingly random natural processes by which species evolve. 

They have been applied with success to Earth sciences by many authors. For example, Groot-Hedlin and Vernon 

use the improved evolutionary programming to estimating the layered velocity structure [2], Hong and Sen use 

multiscale genetic algorithm to invert the earth model [5].  

But the conventional EA often lose their effectiveness and advantages when applied to high-dimensional and 

complex problems. Cooperative coevolution (CC) was proposed by Potter and Jong [1] to solve high-dimensional 

optimization problems through problem decomposition, but it only work well with the separable problem. Yang, 

Tang and Yao have improved the original CC approach for the weak nonseparable problem by introducing a 

grouping based decomposition strategy [6]. However, there still has not a general efficient approach for solving 

the high-dimensional strong nonseparable problem, e.g., high-dimensional waveform inversion. 

In this paper, we propose an improved differential evolution (DE) for the prestack surface seismic waveform 

inversion. DE is a floating-point encoding EA, which has been shown to be a simple yet powerful algorithm for 

global optimization [3, 4]. By incorporating some attractive concepts of CC and Simulated Annealing (SA) into 

the selection operator of DE, the new DE is effective for high-dimensional waveform inversion problem. Another 

novel feature of this paper is that the local fitness functions are introduced to evaluate the subcomponents of the 

high-dimensional individual. We refer the DE with a cooperative coevalutionary selection operator as DE-CCS. 

 
2. WAVEFORM INVERSION WITH DE-CCS 

 
2.1. Differential Evolution and Cooperative Coevolution 
 



According to the paper of Storn and Price, DE contains NP D-dimensional individuals (or vectors) in each 

generation: ,1 ,2 ,, , ,G G G G
i i i i Dx x x x G NP,  denotes the generation and 1,2, ,i . The main operations of DE may be 

summarized as follows [3, 4]. Mutation: creating the mutant individual G
iv by adding a weighted difference vector 

between two individuals to a third individual. Crossover: creating the trial individual  by getting its variables 
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Cooperative coevolution is proposed to solve high-dimensional problems [1, 6]. The main idea of CC is: First 

decomposing the high-dimensional objective vector into smaller subcomponents. Then ‘evolve’ each 

subcomponent using a certain EA respectively in multiple cycles, until the termination condition is satisfied. Via 

this divide-and-conquer method, CC is able to solve many separate problems effectively.  

 
2.2. DE-CCS Algorithm for Waveform Inversion 
  
Given the observed data from a seismic survey (or nature earthquake), simply stated, waveform inversion aims to 

find the best earth model that consistent with the data. In this paper, we pose the waveform inversion as to 

minimize the following objective function (or fitness function): 

2
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where  is the observed data,  is the computed data with guessed earth model parameters m , od ( )cd m
2
 

represents the  norm. 2L

Waveform inversion is a highly nonlinear problem. While the earth model contains a large number of layers, e.g., 

several hundreds, it usually fails to find a near-real earth model with the common global optimization methods. 

CC can’t be directly used to waveform inversion problems for two reasons. First, waveform inversion is a strong 

nonseparable problem, for which there are tight interdependence among variables. Second, the fitness evaluation 

is very computationally expensive for waveform inversion.  

Note that, whether DE or CC, they use a uniform global fitness function to evaluate all the variables in an 

individual. However, one individual which has worse global fitness than other individuals may contain some 

better variables. How can we keep these partial good variables to the next generation? For this purpose, and for 

our waveform inversion problem, we improve the DE with a new selection operation. The new selection operation 

comprises two steps. 

At the first step, adopting the concept of CC, the individuals are decomposed into some subcomponents. Each 

subcomponent contains a few successive layers of earth model parameters. We then assign a local fitness function 

for each subcomponent by adding a corresponding short time-window to the prestack surface seismic data after 



normal moveout (NMO) correction. Figure 1 shows an extreme example: in which each subcomponent contains 

only one layer. The local fitness function for the jth subcomponent can be written as: 

2
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where  is a time window with its midpoint at the jth layer. Although the jth local fitness function is also 

indirectly affected by the parameters above the jth subcomponent, it is mainly affected by the jth subcomponent. 

In some sense, it provides a criterion for evaluating the jth subcomponent.  We produce a mid offspring 

jwin
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subcomponent by one subcomponent according to the local fitness of the individual G
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At the second step, considering the interdependence among subcomponents, coevolution is needed, the final 

offspring is selected according to the fitness values of the parent individual G
ix and the mid offspring 1G

iy . But the 

probability concept for the selection operator of SA is added to this step. 
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where sp  is a constant factor between 0 and 1, usually less than 0.2. 

 
2.3. Application Example 
  
Here, the new DE-CCS is applied on a pre-stack seismic waveform inversion problem to estimate the 1-D 

acoustic model parameters, i.e., the wave velocity V and density . Although it is a synthetic example, the model 

parameters are taken from the real well logs. While computing the observed seismic data, the model is divided 

into 237 layers in depth, with an interval of dz=10 m. Source signature is a 35 Hz Ricker wavelet. In the 

implementation of inversion, the model is parametrized as functions of seismic traveltime, with interval of dt=8 

ms. then there are 205 velocities and 205 densities needed to estimate in this example. A 30% variation 

superimposed on the low frequency trends of well logs defines the search space (Fig. 2). Population size is NP=40. 

For comparison, we use DE-CCS and convention DE to estimate the V and  with the same number of fitness 

evaluations (1200*40). The inverted optimal V are showed in Fig. 2. We can see that, the V inverted with DE-

CCS is consistent with the well log, and the V inverted with convention DE does not converge to the well log. 

Similar results have also been obtained on the parameter , but it is not shown in this paper. 

 
3. CONCLUSIONS 

 
This paper proposed an improved global inversion algorithm, DE-CCS, for the waveform inversion problems. The 

example with well logs shows that DE-CCS is effective for high-dimensional waveform inversion. In each 

iteration step DE-CCS needs twice times of fitness evaluations than DE, but DE-CCS performs better than DE 

with the same total number of fitness evaluations. In the future work, we would like to compare DE-CCS with 



some other global optimization methods, and find a strategy for choosing the length of the subcomponents and the 

length of the time-window. 

 

ACKNOWLEDGMENT 
This work is supported by the National Natural Science Foundation of China (40730424, 40674064), National 

863 Program (2006A09A102) and National Science & Technology Major Project (2008ZX05023-005-005, 

2008ZX05025-001-009). 

 
REFERENCES 

[1] A. M. Potter and K. A. D. Jong, “A cooperative co-evolutionary approach to function optimization”, Proc. the Third International 
Conference on Parallel Problem Solving from Nature, Springer-Verlag, pp. 249-257, 1994. 
 
[2] C.D.Groot-Hedlin, and F.L. Vernon, “An Evolutionary Programming Method for Estimating Layered Velocity Structure,” Bull Seism. 
Soc. Am., 88(4), pp. 1023-1035, 1998.  
 
[3] J. Brest, A. Zamuda, and B. Boskovic, “High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution 
Algorithm with Population Size Reduction,” 2008 IEEE Congress on Evolutionary Computation CEC 2008, pp. 2032-2039, 2008. 
 
[4] R. Storn, K. Price, “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,” Journal of 
Global Optimization, 11 (4), pp. 341 359, 1997. 

[5] T. Hong, and M.K. Sen, “A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis,” Geophys. 
J. Int., 117, pp. 14-32, 2009. 
 
[6] Z.Y. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using cooperative coevolution,” Information Sciences, 178, 
pp. 2985-2999, 2008. 

     
Fig. 1. The left volume shows the prestack surface 
seismic data after normal moveout (NMO) 
correction. The right volume give an example of the 
decomposition of the high-dimensional individual, 
here each subcomponent contains only one layer. 
The mid volume shows the corresponding time-
window for each subcomponent. 

Fig. 2. The inverted optimal velocity V with DE-
CCS (red line) and the inverted optimal V with DE 
(brown line), they are compared with the well log 
(blue line). The dark lines define the search space. 
 

 


