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1. INTRODUCTION

Spectral unmixing is an important task in remotely sensed hyperspectral data exploitation [1]. When the spatial resolution of
the sensor is not fine enough to separate different spectral constituents, these can jointly occupy a single pixel and the resulting
spectral measurement will be a mixed pixel, i.e., a composite of the individual pure spectra (called endmembers in the literature
[2]). In order to define the mixture problem in mathematical terms, let us assume that a remotely sensed hyperspectral scene
with n bands is denoted by X, in which the pixel at the discrete, spatial coordinates (i, j) of the scene is represented by a feature
vector given by X(i, j) = [x1(i, j), x2(i, j), · · · , xn(i, j)] ∈ �n, and � denotes the set of real numbers corresponding to the
pixel’s spectral response xk(i, j) at sensor channels k = 1, . . . , n. Under a linear mixture model assumption [1], each pixel
vector in the original scene can be modeled using the following expression:

X(i, j) =

p∑

z=1

Φz(i, j) · Ez + n(i, j), (1)

where Ez denotes the spectral response of the z-th endmember, Φz(i, j) is a scalar value designating the fractional abundance
of the z-th endmember at pixel X(i, j), p is the total number of endmembers, and n(i, j) is a noise vector. Two physical
constrains are generally imposed into the model described in (1), these are the abundance non-negativity constraint (ANC), i.e.,
Φz(i, j) ≥ 0, and the abundance sum-to-one constraint (ASC), i.e.,

∑p

z=1
Φz(i, j) = 1 [3]. The solution of the linear spectral

mixture problem described in (1) relies on two fundamental issues: the successful estimation of how many endmembers,
p, are present in the input hyperspectral scene X, and the correct determination of a set {Ez}

p
z=1

of endmembers and their
correspondent abundance fractions {Φz(i, j)}

p
z=1

at each pixel X(i, j).
Over the last decade, several algorithms have been developed for extraction of spectral endmembers directly from the input

hyperspectral data set [4]. However, most of them have been focused on analyzing the data without incorporating information
on the spatially adjacent data, i.e., the hyperspectral data is not really treated as an image but as an unordered listing of spectral
measurements with no spatial arrangement. In turn, one of the distinguishing properties of hyperspectral data is the multivariate
information coupled with a two-dimensional (pictorial) representation amenable to image interpretation. Subsequently, the
endmember extraction process could benefit from an integrated framework in which not only the spectral information, but also
the spatial arrangement of pixel vectors were taken into account in the search for image-derived endmembers.

A few attempts exist in the literature aimed at including the spatial information in the process of extracting spectral end-
members. Approaches include morphological endmember extraction [5], which integrates spatial and spectral information, or
spatial preprocessing using a sliding-window approach [6]. These approaches are sensitive to the shape and size of the morpho-
logical structuring element (or spatial window) used as an input parameter to define a spatial context around each pixel vector
in the scene. Instead of relying on a structuring element or window of fixed size, the watershed transform [7] considers the
image data as imaginary topographic relief; the brighter the intensity, the higher the corresponding elevation. Let us assume
that a drop of water falls on such a topographic surface. The drop will flow down along the steepest slope path until it reaches a
minimum. The set of points of the surface whose steepest slope path reaches a given minimum constitutes the catchment basin
associated with that minimum, while the watershed lines are the zones dividing adjacent catchment basins.

In this paper, we investigate the use of the watershed transform for integrating spatial and spectral information in the process
of endmember extraction. The proposed approach is presented as a preprocessing module which can be used in combination



with available endmember extraction algorithms. The method takes advantage of a particular characteristic of remotely sensed
scenes, in which spatially adjacent pixel vectors are expected to share similar information, from a spectral point of view. Thus,
a possible approach to take advantage of such knowledge when searching for image endmembers is to exploit the spatial
similarity between adjacent pixels by defining a criterion which is sensitive to the nature of both homogenous and transition
areas between different land-cover classes. Intuitively, the transition areas between two or more different land-cover types
would likely contain some mixed pixels. Thus, it would be reasonable to assume that pure pixels are less likely to be found
in such transition areas. Our assumption in this work is that the watershed transform can be used to intelligently guide the
endmember searching process to spatially homogeneous areas located at the local minima of the catchment basins and far away
from watershed lines that define the transition areas between different regions, expected to contain mixed pixels. In a similar
fashion, local maxima are also included in the analysis by conveniently manipulating the component being analyzed by the
watershed transform.

2. USE OF WATERSHED TRANSFORM FOR ENDMEMBER CANDIDATE SELECTION

The proposed approach for spatial preprocessing prior to endmember extraction consists of the following steps:

1. Feature reduction. Apply a dimensionality reduction transformation such as principal component analysis (PCA) [8],
singular value decomposition (SVD) [9] or a recently developed Hysime algorithm [10] to reduce the dimensionality of
the data from n to p − 1. In the case of using PCA or SVD for feature reduction, the value of p is estimated using the
virtual dimensionality (VD) concept [11]. When Hysime is used, the value of p is automatically set by this method.

2. Noise reduction. Prior to the application of the watershed transform, which is sensitive to noise and subject to over-
segmentation, we perform a kernel-based smoothing of the transformed image after feature reduction by using a Gaussian
kernel in which the width of the Gaussian, σ, is used as an additional parameter to our proposed framework.

3. Watershed transform preprocessing. Assuming the presence of pure pixels in the image, each of the p components
retained after the feature reduction transformation in the previous step is now treated as a topographic surface. The
watershed transform is used to segment each component in catchment basins and watershed lines. In the context of
our endmember extraction problem, pixels that are spatially purer than its neighbors are expected to be located at the
minima of the catchment basins. To avoid losing those points corresponding to a local maxima in each component, also
expected to contain purer pixels than the neighborhood, each single component under analysis is multiplied by minus
one and the watershed is applied again. Thus, original local maxima are conveniently transformed to local minima, and
the candidates can be conveniently located again using the catchment basins provided by the watershed transform. To
avoid including many redundant candidate pixels (local minima or maxima), only a small percentile of the candidates
from each component are considered. In our current experiments, the threshold is set to 5% of the value corresponding
to the global minima or maxima of the component being analyzed. Therefore, a relevant subset of pixels located at the
catchment basins at each of the p components after the feature reduction transformation are included in the candidate
endmember set and fed to the next stage.

4. Endmember extraction. Finally, a spectral-based endmember extraction algorithm is applied to the set of endmember
candidates obtained after watershed preprocessing to select a final set of p endmembers {Ez}

p
z=1

. Possible algorithms
include the N-FINDR algorithm in [12], the VCA algorithm in [13], or the OSP algorithm in [14], among others [4].

3. EXPERIMENTAL RESULTS

We have conducted a preliminary validation of the proposed approach using a database consisting of 28 simulated hyperspectral
data sets (all with 156×207 pixels in size), obtained through manipulation of real hyperspectral images acquired by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS) over a mixed scenario including agricultural, vegetation, and urban areas1.
This scene has spatial resolution of about 4 meters per pixel and 224 spectral bands. Our simulated scenes are created by initially
applying an averaging filter of size 3 pixels to reduce noise and increase the mixing of the pixels in the original input AVIRIS
scene, simulating a new but similar scene acquired with lower spatial resolution. In the sequence, the number of endmembers are
estimated and the endmembers are extracted from the manipulated scene using a spectral-based algorithm. Pairs of endmembers
with spectral angle lower than a pre-defined threshold were merged to increase the representativeness of the retained final set of
endmembers. In the sequence, the ground truth abundance fractions where generated by applying the fully constrained linear

1Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html, the scene labeled as f960705t01p02 r05
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Fig. 1. (a) False color composition of one of the simulated scenes. (b–f) Candidate endmembers (marked as red dots) extracted
by our proposed method for different values of σ.

spectral unmixing (FCLSU) algorithm in [3] to the manipulated image and the retained set of endmembers (ASC and ANC
constraints are imposed). Then, we use the linear mixture model in Eq. (1) to construct the final image from the retained
endmembers and the ground-truth fractional abundances. In the reconstructed images, created by assuming that at least one
pure pixel per source is available in the image data, the endmembers and fractional abundances are known and can be used as
ground-truth to evaluate the performance of our proposed algorithm. Random noise was added (in different proportions) to the
scenes above to simulate contributions from ambient (clutter) and instrumental sources.

Fig. 1 shows one of the simulated data sets and the candidate endmembers (marked in red color) obtained after applying
steps 1–3 of the methodology described in section 2, using different values of σ and the PCA for feature reduction. The
signal-to-noise ratio (SNR) in the simulated scene is 30 db. As shown by Fig. 1, the spatial representativeness of endmember
candidates increases with the value of σ since the endmembers are located at the minima of progressively larger catchment
basins, but there is also a chance that good endmember candidates may be lost as the value of σ is increased. In order to
substantiate this issue, Figs. 2(a-c) show the box and whisker plots summarizing the percentage of endmember candidates
retained for different values of σ for different feature reduction methods (PCA, SVD and Hysime) applied to the entire set of
28 simulated scenes with SNR = 30dB. For values of σ ≥ 1, the percentage of endmember candidates retained was below 4%,
which represents a substantial reduction of the number of pixels to be analyzed by a given endmember extraction algorithm.
However, despite the fact that reducing the number of candidate endmembers may be perceived as a beneficial feature in
terms of computational complexity and spatial representativeness of such endmember candidates, it is also very important to
substantiate if the candidates retained after watershed transform can be still successfully used for spectral unmixing purposes
(i.e., to analyze the degree of spectral purity of each endmember candidate). In order to evaluate this important aspect, we
analyzed the spectral purity of retained candidates by measuring the fractional abundance of the predominant endmmeber in
each candidate. This analysis is possible in the controlled scenario given by simulated hyperspectral scenes that we have
adopted for experiments in this paper. For this purpose, Figs. 2(d-f) show the box and whisker plots summarizing the average
abundance of the predominant endmember in the candidate pixels retained after the watershed preprocessing, as a function of
the value of σ, for the 28 simulated hyperspectral scenes with SNR = 30dB. As with the percentage of selected candidates, we
can observe in Figs. 2(d-f) that the value of σ plays a crucial role in the spectral purity of retained endmember candidates. On
the other hand, the performance of the three considered dimensionality reduction techniques (PCA, SVD and Hysime) is similar
in terms of the availability of spectrally pure candidates after watershed preprocessing. However, Figs. 2(d-f) also reveal that
the spectral purity of the candidates decreases with increasing values of σ, although the spatial relevance of such endmembers
may increase. In order to substantiate these remarks, further experiments on endmember extraction and fractional abundance
estimation using the retained endmember candidates will be presented with the final version of this paper. Specifically, we
will resort to the N-FINDR, VCA and OSP algorithms for endmember extraction, and to the FCLSU algorithm for abundance
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Fig. 2. (a-c) Percentage of endmember candidates retained by the proposed methodology. (d-f) Average abundance of the
predominant endmember in the candidates retained by the proposed methodology. In both cases, different feature extraction
techniques (PCA, SVD and Hysime) are used.

estimation, relating the results with the ground-truth information available for the simulated scenes. Experiments using real
hyperspectral scenes will be also discussed in the final version of the paper.
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