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1. INTRODUCTION 
 

RAdiation transfer Model Intercomparison (RAMI) was designed as an on-going mechanism to benchmark 

radiation transfer (RT) models used to simulate the transfer of radiation at or near the Earth's terrestrial surface, 

i.e. in plant canopies and over soil surfaces [1]. For the future phases of intercomparisons, one of the expected 

goals would be to investigate the potential of RT models to reproduce in situ measurements of transmitted light by 

various methods such as Tracing Radiation and Architecture of Canopies (TRAC; 3rd Wave Engineering, ON, 

Canada) instrument or digital hemispherical photography (DHP) [2]. The intensive collection of the optical 

measurements in the RAMI-selected real world forest stands is thus required. 

 

Besides the information about the canopy gap fraction and radiation regimes at the forest floor, concurrent TRAC 

and DHP measurements are also vital to address current challenges of the indirect methods with respect to 

quantifying architecture of forest canopies. One of the recurrent themes for the investigations concerning the 

vegetation structure is clumping of plant canopies [3]. Clumping describes the spatial aggregation foliage 

elements. The clumping has been quantified by the aggregation or dispersion parameter [4] or clumping index [5]. 

The clumping index thus describes the level of foliage grouping within distinct canopy structures, such as tree 

crowns, shrubs, and row crops, relative to a random distribution [4]-[6]. The clumping index is useful in 

ecological and meteorological models because it provides new structural information to the effective leaf area 

index [7]. Clumping, through a better separation of sunlit and shaded leaves, has profound effects on the radiation 

regime of a plant canopy and photosynthesis [8]. The clumping index ( ) larger than unity implies the foliage is 

regularly distributed;  = 1 for a random distribution and in the case of foliage more clumped than random,  < 1 

[9].  

 

Various methods were proposed for the assessment of the non-random spatial distribution from field 

measurements [3], [10]-[14]. Considerable differences were observed between the approaches to quantify beyond-

shoot clumping (e.g. [3], [14]-[16]), yet the role of important factors, such as the common practice of assuming 

spherical leaf projection function [17], the choice of segment size [5], [18], or the assumed consistency between 



measurements while using different instruments [14] has been seldomly assessed. This practice calls for a 

comprehensive investigation to evaluate the performance and consistency of the methods with the commonly used 

instruments, and to define their merits and limitations 

 
2. METHODOLOGY 

 
The objective of our study is to determine the canopy nonrandomness at one Silver birch and one Scots pine 

RAMI stand in Jarvselja, Estonia. To achieve this goal, we acquired information about the leaf inclination angles, 

carried extensive measurements by means of TRAC, DHP, and LAI-2000 instruments, and finally characterized 

beyond-shoot clumping based on six different methods found in the literature. We report on the following issues: 

a) how spatially homogeneous are the two Jarvselja RAMI stands with respect to the foliage clumping; b) how 

does the beyond-shoot clumping change with the view zenith angle and height over the stands; c) what are the 

strengths and limits of various methods, and which one performs the best; d) what are the implications of 

assuming spherical leaf distribution function on calculating the beoynd-shoot clumping; e) if is there any 

agreement between results derived from TRAC and DHP. In addition, we suggest a method how to determine the 

appropriate segment length while working with TRAC data. 

 
3. CONCLUSIONS 

The major aim was to define the merits and limitations of the various methods. We conclude the gap size 

distribution and beyond-shoot clumping is very stable across the stands for the solar zenith angle range from 30 to 

60 degrees. Estimates based on the combination of gap size and logarithm methods [14] performed the best while 

compared with an independent gap fraction model [13]. The highest correlation between different ways of 

quantifying the beyond-shoot clumping was achieved for CC [11] and CLX [14] methods. We highlight the 

sensitivity of clumping estimates to the segment length, and we propose an approach how to select the appropriate 

length for TRAC measurements. Our results indicate that choosing a segment length of 100 times the mean 

element width provides the closest results to the expected values. We clarify the effect of the assumed leaf 

inclination angle distribution on gap size distribution and differences between clumping estimates. We 

demonstrate that the effect of the leaf inclination angle is inherently incorporated in the original methodologies of 

[11] and [14]. We also illustrate the changes in selected clumping indices with measurement height. The compiled 

data extend the original parameter dataset to be used in the next (fourth) phase of RAMI for different benchmark 

tests and reflectance modeling experiments, and contribute toward systematic validation efforts of radiative 

transfer models, operational algorithms, and field instruments, as promoted by the Comittee on Earth Observation 

Satellites (CEOS). The achieved results are also highly important for the validating of the current global foliage 

clumping maps from multi-angle POLDER data [19]-[20] using the different methodologies of assessing the 

beyond-shoot clumping. 
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