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1. INTRODUCTION 

 
Detection of a target in cluttered environment based on electromagnetic wave scattering has been considered for many years 
[1-3].  In this work, we consider detection of a target situated on top of a random rough surface, whereby the scatter 
component from the surface is considered to be background clutter.  Detector design is traditionally based on the difference in 
the characteristics of the returned signal from background clutter alone vis-à-vis target+clutter, and usually only exploits the 
differences in the observed wave intensity (or equivalently, radar cross section or RCS) [4],[5]. Our primary contribution is 
the analysis of detection probability when using the angular correlation function (ACF) for enhanced detection which 
correlates the scattered signal at two different angles.  The ACF has been used in subsurface detection [6],[7], but there is no 
analysis of the improvement in detection in terms of probability of detection and false alarm. In our previous work, we 
exploited the strong correlation from rough surface scattering for sea-ice [8] and snow thickness determination [9].  However, 
for target detection on random rough surface, the effect from rough surface scattering is to be minimized. The scattered signal 
from the background as a function of elevation angle exhibits strong peaks at certain combination of frequencies and incident 
and observed angles.   Hence, by careful choice of transmitting frequencies and incident and observed angles, we should be 
able to reduce the effects of rough surface scattering.  Here, we derive the statistical properties of the ACF of a scattered wave 
from a random rough surface and its relationship to the physical parameters of the rough surface and observation system 
geometry.  Then we analyze the probability of detection versus probability of false alarm using ACF and RCS which shows 
that the receiver operating characteristics (ROC) of the detector using ACF is conclusively superior to that using RCS. 
 

2. FORMULATION AND NUMERICAL SIMULATIONS USING FDTD 
 
In our geometry (Fig. 1), the medium 1 is free space ( 1 1;  o o= = ) while medium 2 is a lossy dielectric.  We define the 

intrinsic propagation constant of medium 2 by 2 2 22 rj j f c+ = where 2r  is the complex relative dielectric constant 
of medium 2.  2  represents a loss constant while 2  represents a phase constant.  The wave number is given by 

1 2k f c= , f  is the frequency of the wave, c  is the speed of light and 1 1k= .The far-field scattered wave is given by [10] 
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 is the reflection coefficient, and T  the transmission coefficient.  For TE waves  
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( )[1] (1) [1] (1)( , ) ( ) exp ( )obs inc obs incH K K h x j K K x dx=  where ( )h x is the vertical displacement or height relative to a baseline of the 
random surface.  The angular correlation function of the observed complex amplitude is now given by 
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For a Gaussian random surface with tapered plane wave with illumination ( )W x =  ( )2 2exp / 2 eqx L  and Gaussian auto-
correlation as above. We obtained 
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where ( ) [1] (1) [2] (1)/ 2,  ,  ,    c d obs inc obs incA A B A A B A K K B K K= + = = = . l =correlation length, h =rms height, and eqL = 

illumination length.  We employ the RCS definition [11] of 2 2RCS lim 2 obs incR
R= .  Note from (1), obs  in the far-

field is a function of 1 R  and the RCS thus does not depend on R .  For our two-dimensional geometry, RCS is the 
scattering width or the radar cross section per unit length (and has units of length) [12].    For a fair comparison, we employ 
the ACF definition 2[1] [1] (1) [2] [2] (1)ACF lim 2 ( , ) ( , )obs obs inc obs obs inc incR

R K K K K=  which also has units of length. 

 
We investigate the behavior of the angular correlation function and the radar cross section for the scattered waves in two cases 
where (1) a target is present on a random rough surface and (2) no target is present (rough surface only).  Previously, we 
derived the analytical solution for ACF for rough surface scattering.  However, when a target is present, the analytical solution 
for a scattered wave is not tractable because of the complex interaction between the target and the random rough surface.  
Therefore, we employ numerical simulations using the two-dimensional finite-difference time-domain (FDTD) method.  The 
geometry of the simulations is illustrated in Fig. 1.  Wave scattering is simulated and the observed wave is calculated in the 
situation where the perfect electric conductor (PEC) target is present and when there is no target.  The rough surface interface 
has a Gaussian correlation function with the rms height of 2.4 cm and correlation length of 12 cm.  The PEC target has a 
radius of 10 cm, the center frequency of the incident wave is 1.5 GHz, the ground dielectric constant is 3.7 0.1j .  The 
surface length of the simulation is 200 wavelengths.  The incident wave is a tapered plane wave with an incident angle of 20o .  
The grid resolution in the simulation is 50 points per wavelength.  PML is used to absorb out-going wave and prevent 
erroneous scattering.          
 

3. PROBABILISTIC MODEL OF RCS AND ACF 
 
The p.d.f. for the RCS of the Gaussian random surface was derived by [14] and is in the form of an exponential distribution 
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Consider the p.d.f. of the ACF, using the definition of ACF, we get   
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Note that function [1] (1)( , )obs incH K K  is a random function that is the Fourier transform of the random height ( )h x .The functions 
[1] (1) [1] (1)

1 1 ( , ) ( , )obs inc obs incF K K H K K=  and [2] (1) [2] (1)
2 2 ( , ) ( , )obs inc obs incF K K H K K= are, in general, complex.  If the rough surface height has 

Gaussian characteristics, the real and imaginary parts of these functions are also Gaussian distributed since 1 and 1  are both 
complex constants [12].  By transforming to polar coordinates, the real and imaginary parts are converted to magnitude and 
phase.  With the large illumination area ( eqL ), we can assume that the magnitude and phase of functions F’s are 
independent [13].  Thus, we find the p.d.f of the magnitude of the function 1F  in the form of Rayleigh distribution as [13].  
The p.d.f of ACF is therefore the p.d.f of multiplication of two Rayleigh-distributed random variables with two different 
parameters and a purely real number scaling.  With a large illumination area ( eqL ), we can assume that 1F  and 2F  are 
independent, the distribution of the product of two independent Rayleigh random variables. We obtain the p.d.f of  

1 2V F F=  as the double-Rayleigh distribution [14],[15], i.e.,  
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where oK  is the modified Bessel function of the second kind and zeroth order. ( )
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= .  The numerical simulations using FDTD are compared to the analytical solution given 

in Fig.2. In this particular example, the RCS is calculated where the incident and observation angles equal 20o .  The ACF is 
calculated in the case where the incident wave is 20o and the observed waves are at 20o  (backscattering) and at 10o .   
 

4. TARGET DETECTION PERFORMANCE 
 
In the previous section, we analytically determined the p.d.f of ACF and RCS for a scattered wave from a random rough 
surface which can be used to obtain the probability of false alarm. The determination of the probability of detection requires 
the p.d.f of the scattered wave when a target is present.  However, the complex interaction between the target and the random 
rough surface precludes any analytical solution for the p.d.f for either the RCS and the ACF, and we resort to FDTD 
computations to numerically estimate the p.d.f .  FDTD calculations of 500 ensembles were used to produce histograms of the 
RCS magnitude and ACF magnitude.  we computed the probability of detection versus probability of false alarm for both the 
RCS and ACF methods by varying the detection threshold resulting in the receiving operation curve (ROC) shown in Fig. 3.  
This shows that the ACF method exhibit better performance over RCS in term of probability of detection versus false alarm. 
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Fig. 1.  Left: Geometry of the circular target detection problem. Right: Geometry of FDTD simulations. 
 

  
Fig. 2. The p.d.f of magnitude of RCS and ACF comparison between an analytical model and FDTD simulations. Left: P.d.f of RCS 
comparison between Eq. (4) and FDTD. Right: P.d.f of ACF comparison between Eq. (6) and FDTD. 

 
(a)                                                                    (b)                                                                 (c) 

Fig. 3. Probability distribution of RCS and ACF.  In this comparison, the incident wave is 20o .  (a) P.d.f of RCS is calculated from the 
backscattering wave with [1] 20obs = , (b) P.d.f. of  ACF is calculated from correlation of the observed wave 1 at backscattering direction 

[1] 20obs =  with the observed wave 2 at [2] 10obs = , and (c) ROC result.  


