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1. INTRODUCTION 

Several past works state that the combined use of multi-source remote sensing data improves accuracy for land 

cover classification, e.g. [1] [2], using different methods. Most of them are compared in [3], namely maximum 

likelihood, decision trees and support vector machines (SVM), showing that SVM give the best accuracy.

Multi-source SVM fusion is certainly a key research subject in remote sensing sciences for the future, 

potentially allowing to downscale class sets and to handle the most complex structures. The aim of this work is to 

explore the contribution of multi-source SVM fusion for mapping and monitoring the Marquesas Islands 

landscapes. 

2. MATERIAL AND METHODS 

Nuku Hiva Island is a good study model for the Marquesas archipelago in term of alien species invasion which is 

arguably one of the major threats to native ecosystems [4]. There is a particular need for better quality and more 

information on the distribution and impact of invasive species in order to improve policy, legislation and 

implementation procedures against these aliens. 

SVM [5] are chosen because they perform more accurately than other classifiers in mono-source cases, e.g. 

[6] [7] [8], and in multi-source cases [3]. They are frequently used with three kinds of nonlinear kernels: the 

polynomial, the Gaussian radial basis function and the sigmoid ones. Since these kernels have rarely been studied 

in a multi-source problem in remote sensing applications, we compare their output accuracy. 

Remote sensing is a useful tool for ecosystems mapping for three main reasons. First, in mountainous areas 

such as Pacific volcanic islands, access is often limited and resources are difficult to evaluate in situ. Secondly, 

vegetation structural complexity needs an integrative approach (such as pixels one) to be optimally understood. 



Finally, affecting ecological parameters such as luminosity, nitrogen availability or water resources, the above 

vegetation stratum structures the underlying ones; remote sensing just informs synoptically about the above 

vegetation stratum. Thus, remotely sensed data and ground truth can be efficiently linked emphasizing main 

remotely sensible vegetation stratum characteristics. 

A first ground truth campaign is carried out to look for a representative class set. Vegetal community is 

commonly divided by phytosociologists into 3 strata: herbaceous (<1m), shrubs (1-5m) and trees (>5m). To 

characterize vegetation composing the study area, 143 inventories in the commonly used surfaces - 100m² for 

herbaceous synusiae and 450m² for shrub and tree ones - are sampled systematically in a mesh network from an 

initial random point. The distance between two sampling area is 300m. For each inventoried species in each 

stratum, an abundance index (from 0 to 5) is inputted. Then, we compute a simple process to select the dominant 

highest vegetation stratum only for each synusiae i.e. emergent species in the remotely sensed images.

In a second ground truth campaign, 36 training spots of 450m² (~1‰ of the site study), three per class, are 

selected and geolocalized with a GeoXH Trimble GPS. Such balanced datasets are used to avoid class over- or 

under-representation problems [9]. For validation, 36 others spots are sampled.  

3. MULTISOURCE CLASSIFICATION 

Three complementary multi-sensor structural and functional information sources are used for the analyses. 

- Optical data such as IKONOS satellite’s scenes from 2005 informs us about vegetation texture and passive 

absorption spectra. The 1m-merged data set (3 bands multispectral) spectral resolution is =0.45-0.72 m, i.e. the 

visible spectrum. The high spatial resolution of IKONOS imagery gives useful details for species discrimination 

by computing some gray level co-occurrence matrix (GLCM) texture metrics [10] for example. Four GLCM 

texture metrics - variance, contrast, dissimilarity and angular second moment - are computed by using three 

window sizes of 3x3, 9x9 and 15x15 pixels which visually correspond to intra-tree micro-texture, intra-tree 

macro-texture and inter-tree texture respectively. 

- The NASA PACRIM II AirSAR mission of 2000 over-flied the Marquesas archipelago, providing 5m-

resolution SAR data in 3 bands: TopSAR CVV (  =5.7 cm), and PolSAR L (  =23 cm) and P (  =67 cm) bands in 

full polarimetry. Relying on the work of [11], the ten most relevant polarimetric indices for Polynesian vegetation 

classification are extracted. Active radar backscatters are dependant of vegetation structure, humidity or 

incidence angle and add thus evident supplementary information. Unlike the optical data, SAR data is insensitive 

to cloud cover but we can get relief shadows due to the airborne sensor flying over the high volcanic Marquesas 

Islands.  



- Oro-topography is a third information source concerning vegetation spatial distribution. Climatic factor 

such as moisture and temperature are typically variable in mountainous areas, affecting vegetation distribution 

patterns by controlling key ecological processes. We use four topographical indices well known to affect - 

directly or not - patterns of climate zonation: elevation (meters above sea level), slope steepness (degrees), 

eastness (dimensionless) i.e. exposition to the trade winds and a compound topographic index (CTI, 

dimensionless) quantifying fluid drainage [12]. 

The chosen multi-source decision scheme is the most relevant one in [3]. All SVM are trained on each 

individual data. Their outputs are then used for a SVM-based decision fusion to predict the final class 

membership of each sample. 

4. RESULTS AND DISCUSSION 

As shown by [13] in a mono-source case, RBF and polynomial kernels produce similar results with a significative 

superiority for the RBF one. Likewise, [14] denote that the RBF kernel has less numerical difficulties than others. 

Our results corroborate these observations in a multi-source case. 

With an overall accuracy of 70%, fusion results are fairly good for such a complex problem, the site study 

landscape being a complex system of numerous intrusive plant communities. Multi-source fusion has two effects. 

The first one is a synergic effect between each complementary mono-source successful classifications whereas 

the second one is based on fruitless classification: SVM decision fusion is able to use mono-source confusion 

patterns as information. 

Due to its spatial and spectral resolutions, AirSAR data is not adapted to the detailed species-based class set 

we used. Conversely, and by nature, it is adapted to structural class sets such as vegetation strata. 

Results on the DEM prove that some species have a higher ecological valence than other more specialist

species. Four species have a clear spatial determinism. Casuarina equisetifolia subsp equisetifolia and 

Dicranopteris linearis, distributed on rocky outcrops and ridges respectively i.e. areas with high elevation and 

low CTI, Inocarpus fagifer living in riparian sites, where CTI is high while Sapindus saponaria is a typical 

component of semi-xerophilous forests with low CTI and localized on the strongest slopes. 

In the Marquesas archipelago, multi-source SVM fusion allows classifying fine-scale class sets as dominant 

species. Alien invasive species are dominant in 14% of the total study site (234 hectares). The invasion is 

generally spread but often concentrated near disturbed areas. Alien invasive species seem to take advantage of 

anthropogenic perturbations and landscape fragmentation, facilitating flux of propagules and encouraging the 



invasion process. Some alien invasive species are elsewhere well known to modify ecological condition as 

aggravating soil erosion hazard. Bare lands, as erosion prone areas, are already covering 24 hectares i.e. 1.4% of 

the total study site! 
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