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1. INTRODUCTION 
 
Image segmentation is a critical technique for remote sensing image analysis and interpretation. It is the basis of 

image understanding, such as region-based change detection for maps updating, target recognition, and so on. 

Existing literatures [1, 2] have proved that, by combining multiple data sources, e.g., synthetic aperture radar 

(SAR) and optical imagery, the overall classification accuracy will significantly  increase compared to the quality 

of a single-source classifier.  

Multi-view learning approaches [3, 4, 5] form a class of semi-supervised learning techniques using multiple 

views to effectively learn from partially labeled data. Although there are a variety of multi-view learning 

algorithms, they are all founded on the common principle: training the classifiers for the views by maximizing the 

agreement on their predictions for the unlabeled data 2( ) ( )
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the prediction from the classifier of i-th view for the unlabeled data point x U .  For remote sensing image 

processing, the views can be formed from the same modality (e.g., images acquired in the same geographical area 

at two different times by the same sensor) or multiple sources (e.g., images acquired in the same geographical 

area by different sensors). In the aids of multiple redundant views, existing approaches to multi-view learning or 

co-training [3] achieve a more robust result by working in a bootstrap mode and mutually training classifiers to 

augment the labeled data. Multi-view learning has shown its advantages over single view learning, especially 

when the theoretical guarantees, i.e. compatible and redundancy, are satisfied [3, 5]. 

 In this paper, a novel method for the joint segmentation of multisource images is formed as a multiview learning 

problem. Each individual data source, i.e., the SAR data or the optical image, is assigned to be an individual view 

in multiview learning. Markov random field (MRF) model is employed for each view segmentation and energy 

function is defined on every view. Therefore, the joint segmentation of multisource data sets is transformed into 

simultaneously minimizing the combined MRF energy functions defined on individual view.  This gives a new 

perspective on the previously multisource imagery segmentation methods, and also makes explicit the 

circumstances under which these algorithms fail.  



2. MULTISOURCE IMAGE SEGMENTATION BASED ON MULTIVIEW LEARNING 
 

Structure of the proposed model is illustrated in Fig. 1. 
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Figure 1. Structure of multisource image segmentation model based on multiview learning. 

 

Details of the proposed approach are described as following:  

In the proposed approach, the SAR image X1 and the optical image X2 are considered as two views in the 

multiview learning. Let Xi={ xi(m, n), 1 m M, 1 n N} (i=1,2) and xi(m, n) be the features in location (m, n) 

obtained from the i-th view. Then the vector Xi represents all sample observations for the i-th view. Yi={ yi(m, n), 

1 m M, 1 n N } (i=1,2) is the segmented map of the i-th view. Look at the multi-view learning from 

Markov random field model perspective, each view is modeled by a MRF model and an undirected graph is 

defined on each data set. Let Gi=(Vi, Ei) denote the graph model defined on the i-th view, and Ei is the 

corresponding Gibbs energy function. Hence, we denote ( ( , )) ( , )i i ig x m n y m n  for each view. Although there 

are multiple views from the feature sets, one pixel in the final change map can only has one label y(i, j). Here we 

define an additional combined function Gc and denote Yc as the final consensus output of the multiple views. To 

model the dependency among different views and reach a consensus, we introduce a latent function F. So the 

global observation process is expressed by ( ) { ( )}i iF x f x . Considering image labeling as an inverse process 

that attempts to estimate the best Y given the observed image X. It can be formulated as a maximum a posterior 

(MAP) problem for which maximizing the posterior P(Y|F) gives a solution. According to Bayes rule, this is 

equivalent to maximizing P(y|x)P(x). The most probable or MAP labeling x is defined as:  

                 arg max{ ( ( ) | ) ( )}
y Y

y p F x y p y .                   (1) 



Suppose the different nodes in multi-views be conditionally independent given a consensus label. Thus, P(F|y) 

can be obtained by as a product of singleton probability terms assigned to the nodes in each view: 

1 2

1 1

( ( ) | ) ( ( ) | )

( ( , )) ( ( , ), ( ))

i i i
i

M N

i i i i i mn
m ni

P F x y P f x y

x m n y m n y N
.(2) 

Here for each view 1( ( , ))i ix m n  specifies the feature model energy about the correlation of feature levels 

between the individual label yi in final classification map and the pixel xi(m,n) in the observed image. 
2 ( ( , ), ( ))i i i mny m n y N  describes the potential function of the interactions among pixels yi(m,n) in the 

appropriate neighborhoods mnN defined on i-th view. Commonly, two models are popularly adopted for 

representing the feature model (P(x|y)) and the spatial context model (p(y)) in pairwise MRF model. For P(x|y), 

we often consider xi as a constant feature level corrupted by additive independent noise. Furthermore, it is often 

assumed to be a Gaussian function for simplicity,  
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For P(y), an MRF model named the multilevel logistic model (MLL) has been popular. Under the Markovian 

framework, the joint probability distribution of the image sites can be rewritten in terms of the local spatial 

interactions, which are analytically expressed by clique energy functions. The clique energy of MLL is defined as 
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where  is a penalty for the existence of boundary site pairs and Z is a normalizing constant known as the 

partition function. Substituting the feature model energy function (3) and prior potential functions (4) into (1), the 

MAP formulation of the labeling task (1) is transformed into an energy minimizing problem as 
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The energy function can be minimized by iterative conditional mode (ICM) [6] or simulated annealing (SA) [7]. 

 
3. EXPERIMENTS 

 
To thoroughly assess the performance of the proposed approach, we verify it on several artificial images and real 

remote sensing images. For synthetic data, here we only used intensity values of the image as the features. For 

real remote sensing images, we used L*a*b color feature and Gabor feature to describe the images. We also 

compared our results with ones obtained by Waske’s method [1]. Some segmentation results are shown in Fig. 2 



and Fig. 3 for visual comparison. Experiments on synthetic dataset and real remote sensing images confirm the 

effectiveness of the proposed approach.  

      
                       (a)                              (b)                             (c)                               (d)                              (e)                             (f) 

Figure 2. Visual comparison of some segmentation results on synthetic data. (a) Optical image; (b) SAR image; (c) Segmentation results 
obtained by the proposed approach; and Segmentations on (d) optical image; (e) SAR image; (f) Waske’s result. 
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Figure 3. Visual comparison of some segmentation results on real remote sensing datasets. (a) Optical image; (b) SAR image; (c) 
Segmentation results obtained by the proposed approach; and Segmentations on (d) optical image; (e) SAR image ; (f) Waske’s result. 
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