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ABSTRACT 
Locations of collapsed buildings (CBs) caused by earthquake are the most needed information by the disaster 

reduction team, due to their strong correlation with losses of properties and human lives. Optical remote sensing 

images with high spatial resolution (OIHR) play an important role in extracting CBs. Currently there are mainly 

two approaches: manual interpretation and change detection [8, 9]. Manual interpretation requires too many costs 

both on labor and time, and can not easily satisfy urgent demands in the emergency response. Change detection is 

effective only when pre-disaster OIHR are available. However, getting pre-disaster OIHG is always difficult 

especially in the suburban areas in the developing countries. This problem became apparent in the 5.12 Wenchuan 

earthquake which struck southwest area of China with magnitude of 8.0 on May 12, 2008.  

From visual interpretation of the post-disaster 0.5m ADS40 airborne images, CBs show three properties: (1) 

covering a certain amount of area with no uniform shape; (2) having a rough surface but no uniform texture; (3) 

all these properties can be visually detected from a single green band. Taken into considerations of these 

properties, we propose a CBs extraction method using only the post-disaster ADS40 images. The essence is to 

project the CBs information onto a high dimensional feature space where CBs are easier to be extracted through 

pattern recognition methods. Morphological profiles are adopted to extract changing patterns of each pixel within 

multi-scale objects [1, 2, 4, 7]. This pattern works like “spectral signature” in the spatial context and is effective in 

represent small and low contrast objects in the OIHR. Rotation invariant texture features are employed to 

differentiate objects with different texture statistics [5, 6]. Finally, SVM classifier is used to extract CBs with 

manually extracted training and validation samples [3]. The workflow of method is shown in Fig.3. 

A subset of ADS40 image with a size of 400*400 was selected in our experiment as shown in Fig.2. The data 

covers the area of Pingwu County and was acquired on May 16 2008. It has a spatial resolution of 0.5m.Totally 

3475 samples are selected for CBs. They are randomly divided into 250 for training and 3225 for validation 

respectively. With the same procedure, 250 training and 3129 validation simples are selected for other targets. All 

the parameters used to build features are shown in Table 1 and 2. The resultant images are shown in Figure 2. 

Classification results with various feature combinations are shown in Table 3.  



From Fig 2, MPs and texture statistics together achieve a reasonable result, texture features alone are inefficient 

mainly due to border effects and the MPs features alone are inefficient mainly due to their inability to fully

represent the CBs. From Table 3, features including MPs and texture statistics gain the highest overall accuracy.

As there are still apparent classification errors in the MPs and texture derived CBs image, further research may

include more features through increasing the number of window sizes and/or statistics. Feature selection method 

may be adopted to select the core features. Also the proposed method needs to be tested on more images covering

various landscapes.

Fig.1 workflow of CBs extraction method 

Table 1 Parameters for extracting texture features 
Features

from
Texture

data Window
Size Statistics Gray

Level Displacement
Rotation
Invariant
Operator

FT1 green
band 3*3 Contrast 64 [1,1],[1,0],[0,1],[-1,1] MIN( )

FT2 green
band 5*5 Contrast 64 [1,1],[1,0],[0,1],[-1,1] MIN( )

FT3 green
band 3*3

Inverse
Difference
Moment

64 [1,1],[1,0],[0,1],[-1,1] MAX ( )

FT4 green
band 5*5

Inverse
Difference
Moment

64 [1,1],[1,0],[0,1],[-1,1] MAX( )
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Table 2 Parameters for extracting MPs features 
Features

from MPs Data Window
Size Type Features

from MPs Data Window
Size Type

FM1 green band 3*3 opening FM5 green band 3*3 closing
FM2 green band 7*7 opening FM6 green band 7*7 closing
FM3 green band 9*9 opening FM7 green band 9*9 closing
FM4 green band 15*15 opening FM8 green band 15*15 closing

a   b

c  d
Fig.2 a shows the green band image, and b, c, d show the resultant images derived from features including MPs

and textures, Textures alone, MPs alone respectively.



Table 3 Comparison of validation accuracies from different combination of features 
No. Features(number) Overall Accuracy Kappa Coefficient

1 Texture statistics + green band (4) 79.7% 59.4% 

2 MPs + green band (8) 83.6% 67.4% 

3 MPs + Texture statistics + green band (12) 90.5% 81.0% 
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