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1. INTRODUCTION 
 
State-of-the-art satellite SAR sensors acquire data of one meter geometric ground resolution, airborne sensors achieve even 
higher resolutions. Nonetheless, layover and occlusion hamper interpretability of such data particularly in urban scenes. In 
order to overcome this drawback, SAR data may be in analyzed in combination with optical data in urban areas [7][8][9]. We 
use additional information from aerial photos to detect buildings. Features are extracted from both data sets and introduced to 
a common feature vector followed by a classification into building sites and non-building sites. We use a Conditional Random 
Field (CRF) [10] framework for classification, which provides high modeling flexibility by both relaxing the conditional 
independence assumption and incorporating global context information (as compared to Markov Random Fields (MRF)). 
Furthermore we show that the different sensor geometries of the SAR and the optical sensor may be used to estimate building 
heights (once buildings are detected) under the assumption of locally flat terrain. Such height estimate may be helpful to 
resolve phase unwrapping problems and model urban scenes three-dimensionally. The proposed methods are tested using an 
aerial orthophoto and airborne InSAR data acquired by the Intermap Aes-1 sensor [15] of the city of Dorsten, Germany.  
 

2. FEATURES 
 
We take very simple features for the building detection task because our focus is on the overall suitability of CRFs as a 
method for building detection. Mean and variance of the red channel, the blue channel, and the hue are found to be descriptive 
color features. Additional features are calculated based on the gradient orientation histogram of the intensity image as already 
used for building detection in terrestrial images by Kumar and Hebert [11]. We use mean, variance, the maximum value, and 
the sinusoidal difference between the two highest values (i.e., detection of right angles) as features.  The analysis of the 
InSAR data is focused on the detection of stable building features and their recognition. The most reliable feature is the 
building corner [5]. Furthermore, the InSAR phase distribution along the corner lines facilitates the separation of these lines 
from other bright lines in the scene (see details in [12]).  
 

3. CONDITIONAL RANDOM FIELDS 
 
Like all graphical models, CRFs (see Eq. 1) have the advantage of assigning probabilities to the final labeling instead of only 
providing final decisions (like for instance Support Vector Machines). In contrast to MRFs, CRFs are discriminative models 
and therefore model only the posterior distribution P(y|x) of the labels y given data x.  
                                                                              
                                                                                                                                                                                  
 
 
 
The association potential Ai(x,yi) measures how likely a label site i is labeled with yi given data x, while the interaction 
potential Iij(x,yi,yj) describes how two label sites i and j interact. Both the association potential and the interaction potential 
are defined over all data, the entire orthophoto and all InSAR data in our case. Hence, we may introduce both local and global 
context knowledge, which is a major advantage concerning automatic analysis of high-resolution remote sensing data of urban 
areas. In order to obtain a posterior probability P(y|x) of labels y conditioned on data x the exponential of the sum of 
association potential and interaction potential is normalized by division through the partition function Z(x), which is a 
constant for a given data set. 
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Our modeling of the association potential Ai(x,yi) and the interaction potential Iij(x,yi,yj) is closely related to the approach 
proposed by Kumar and Hebert in [11]. For our binary classification task of distinguishing building sites from non-building 
sites, labels yi may either become 1 or -1, respectively. The association potential Ai(x,yi) measures how likely it is that a site i 
takes label yi given all data x (see Eq. 2). We use logistic regression to distinguish building and non-building sites in the 
association potential.     
                                                                                                                                                                                  
 
 
 
We deal with a binary classification task and hence we use the sigmoid function (t) = 1/(1+e-t) as activation function . 
Vector hi(x) contains all node features whereas vector wT contains the weights of the features in hi(x) that are tuned during the 
training process.  
The interaction potential Iij(x,yi,yj) determines how two sites i and j should interact regarding all data x (see Eq. 3). In our 
case, feature vector ij(x) is simply calculated by subtracting the single scale feature vector from site j from such of the site i 
of interest ij(x) = hi(x)-hj(x). Vector vT contains the weights of the features, which are adjusted during the training process. yi 
is the label of the site of interest and yj the label it is compared to. Unlike clique potentials in MRFs, label yj does not 
necessarily have to be a label of a site j in the local neighborhood of yi.  
 
 
 
Only single scale features are used for the interaction potential and no quadratic expansion of the feature vector is currently 
done. The comparison of labels yi and yj follows the Ising model yiyj. With  = 1, the product yiyj becomes -1 if labels yi and 
yj do not belong to the same class whereas their product is 1 in case both labels are equal. We use the limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method as optimizer to train the association potential and the interaction 
potential simultaneously. For inference we use Loopy Belief Propagation (LBF). 
 

4. HEIGHT ESTIMATION 
 
Various possibilities of estimating building heights based on SAR [4][9] and InSAR [1][2][3][6] data exist. However, to our 
knowledge, only very few attempts have been made to exploit the different sensor geometries of optical and SAR sensors for 
building height estimation. As shown in Fig. 1, building top P is imaged to point PS in the SAR image whereas it is mapped to 
point PO in the optical image. Basic concepts to exploit this effect for building height estimation are developed in [16] and 
further extended in [14]. Due to the central projection of the optical aerial sensor, buildings are projected away from the 
sensor’s nadir point (see Fig. 1b). The corner line extracted from the InSAR data, however, is located exactly at the location 
where the building walls meet the ground (corresponding to point P’ in Fig. 1a). Hence, the roof of the building falls over the 
corner line (Fig. 1c). A rough height estimate can simply be determined with h = d / tan 2

 where d corresponds to the distance 
between P’ and PO measured in the image. The further away from the nadir of the optical sensor and the higher the building, 
the more accurate may the building height be estimated. In our paper we will present first height estimation results for flat 
roofed buildings and compare them to ground truth derived from LIDAR data.  
 

 
a 

 
b 

 
c 

 
d 

Figure 1.  Comparison of SAR and optical viewing geometry under the assumption of locally flat terrain (a); optical data 
(b) overlaid with cadastral building footprint; optical data (e) and LIDAR data (d) overlaid with detected building corner 
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