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I. Introduction

Kernel methods have received a considerable attention this last decade [1]. Their performances for classification,
regression or feature extraction make them popular in the remote sensing community [2]. The core of kernel learning
algorithms is the kernel function. It measures the similarity between two spectra x and y in a d-dimensional vector space,
and enable the transformation of a linear algorithm into a non-linear one [3]. Over the different kernels used in remote
sensing, the Gaussian kernel is very popular:
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)
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It usually gives good results and has only one hyperparameter (γ) to be tuned.
Under some weak conditions, the feature space induced by the kernel is a Riemannian manifold [4], [5]. The metric

tensor is
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∂2k(x,y)
∂xi∂yj
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which is for the Gaussian kernel: gij(x) = γ−2δij with δij = 1 if i = j and 0 otherwise. This metric stretches or compresses
the Euclidean distance by a factor γ−2 and the implicit model associated to the input data x is the normal law with
a diagonal covariance matrix and identical elements: Each variable1 has the same variance and there is no covariance
between variables (which is not true in practice). It also assumes that each variable is equally relevant for the given task,
e.g. classification. A more advanced model is to consider that the data follow a normal law with a diagonal covariance
matrix, but with no identical diagonal elements: Each variable has its own variance, but still no covariance. It is then
possible to tune the relevance of each variable separately. It was shown in [6] that it improves the classification accuracy,
but it also increases the computational load. The more general model, full covariance matrix, leads to the well known
Mahalanobis kernel (mk) [7]:

k(x,y) = exp
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2γ2
(
x− y

)tQ(x− y
))
. (3)

Several definitions of Q exist for the problem of classification: It can be either the inverse of the covariance matrix Σ
of the total training samples [7] or the covariance matrix of the considered class [8], e.g. for m classes problem, if the
classifier separates the class c against all the others Q is Σ−1

c . Generally, Q can be any positive definite matrix. The metric
induced is gij(x) = γ−2Qij , it stretches or compresses the variance of the data along their principal directions. Although
the mk better handles the data characteristics than conventional Gaussian kernel in small/moderate dimensional space,
it is difficult to use in high dimensional space, such as hyperspectral remote sensing images. As a matter of fact, the
estimation of the covariance matrix is ill-conditioned, making its inversion unstable. Moreover, all the principal directions
are not equally relevant for the classification purpose: A subset of them corresponds to the signal while the remaining
dimensions correspond to the noise.
In this article, it is proposed to regularize Q in a suitable way and to tune the weight of the principal directions

according to their relevance in the classification problem.
1In this study, the variables are the different components of the spectra.



II. Regularization of the covariance matrix

From the spectral theorem, the covariance matrix can be written as:

Σ = VΔVt (4)

where Δ is the diagonal matrix of eigenvalues and V is the orthonormal matrix of corresponding eigenvectors. Its inverse is

Σ−1 = VΔ−1Vt. (5)

Ill-conditioning is related to a high condition number κ(Σ): The ratio between the largest δ1 and the smallest δd
eigenvalue [9]. In general, in hyperspectral imagery, Σ is not full rank. One consequence is a high condition number.
Another consequence is that not all principal directions carry the relevant signal and thus it is possible to discard
principal directions corresponding to zero (or closed to) eigenvalues.
Following [10], [11], it is proposed in this article to use the PCA-Ridge regularization based approach: Noting Ipd the

diagonal matrix with the p first elements equal to 1 and the remaining equal to 0 and defining Ω = VIpdVt, the ill-posed
problem (5) is changed to

(
ΩΣ+ τId

)−1Ω which is, after trivial simplifications, equal to VΛ(τ, p)Vt with

Λ(τ, p) = diag
[

1
δ1 + τ

, . . . ,
1
δp + τ

, 0, . . . , 0
]
. (6)

Usually, the regularization parameter τ is set to a small value: δi + τ ≈ δi if δi is high enough. Therefore, principal
directions corresponding to high eigenvalues are slightly regularized and those corresponding to small eigenvalues are
largely regularized. The remaining (d− p) principal directions are discarded.
Finally, with the regularized estimate of the covariance matrix, (3) can be rewritten as:
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with A the projection operator on the vector space A spanned by the p first regularized principal directions (the projection
on the (d−p) last principal directions are always null) and ‖ ·‖2 the Euclidean norm in R

p. A represents the class specific
subspace. In the following the subscript c indicates the corresponding class.

III. Mahalanobis kernel

In this section, the proposed Mahalanobis kernel is detailed. In Ac, the variables from the class c are uncorrelated. It
is therefore suitable to tune the relevance of each variable for the classification problem by introducing a diagonal matrix
Γ of hyperparameters (Γii = 1/γ2

i ) [6]:

kc(x,y) = exp
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2
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)tAcΓAtc
(
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. (8)

The metric tensor is now

gij(x) =
p∑
q=1

vi(q)vj(q)t
(δq + τ)γ2

q

(9)

with vi(q) the ith element of eigenvector v(q) associated to eigenvalue δq, τ the regularization parameter, p the number
of remaining principal directions and γq the hyperparameter, which will be tuned during the training process.
This formulation has several advantages over (3): (i) The condition number of the matrix is equal to γ2

p(δ1+τ)/γ2
1(δp+τ),

which is controlled by the two parameters p and τ ; (ii) it is known that the principal directions are not optimal for a
classification application since they do not maximize any discrimination criterion, but they still span a subspace where
there are some variation in the data. By controlling, with Γ, which directions are relevant (or discriminative) for the
classification, it is possible to go further in the classification process: The feature space is modified during the training



process to ensure a better discrimination between samples; (iii) Γ provides some information of the relevance of each
principal direction.

IV. Experiments

In this section, results obtained on real data sets are presented. The data is the University Area of Pavia, Italy, acquired
with the ROSIS-03 sensor. The image has 103 bands and is 610× 340 pixels. 9 classes have been defined.
For the classification, a SVM with gradient based approach to tune the hyperparameters was used [12] and one versus

all multiclass strategy was employed. The proposed kernel has been compared with the conventional Gaussian kernel, the
Mahalanobis kernel where a small ridge regularization has been done to prevent instability, and the proposed regularized
Mahalanobis kernel. The covariance matrix Σc for class c was estimated with the available training samples.
Classification results are reported in Table I. The proposed kernel leads to an increased accuracy when p corresponds

to 99.9% of the cumulative variance. From the table, if for the conventional Mahalanobis kernel τ has an influence on the
process, with the proposed kernel the regularization parameter p is more critical. By retaining more principal directions,
up to a certain amount, the training process becomes longer with no increase of the accuracy. Then the accuracy decreases.
Further research are conducted to find the optimal p for each class.

Table I
Classification accuracies for the different kernels in percentage of correctly classified samples. s means there is one

hyperparameter and m means there is one hyperparameter per variable. For the regularized kernel, the number in brackets
represents p the number of remaining principal direction. It corresponds, for the firsts two results, to 99% of the total

variance and 99.9% for the last two results. For each class, the number of training samples is indicated in brackets.

Kernel Gaussian Mahalanobis Reg-Mahalanobis
Γ s m s s m m m m
τ - - 0 102 0 102 0 102

Asphalt (548) 94.4 94.9 88.4 91.8 94.5 (7) 94.5 (7) 95.9 (39) 95.9 (39)
Meadow (540) 79.2 78.3 70.9 75.8 77.2 (4) 77.2 (4) 81.9 (24) 81.9 (24)
Gravel (392) 95.7 97.2 96.2 97.0 96.8 (5) 96.8 (5) 97.5 (30) 97.5 (30)
Tree (524) 93.8 94.4 96.5 97.8 94.3 (6) 94.3 (6) 98.3 (23) 98.3 (23)

Metal Sheet (265) 99.8 99.8 99.9 99.9 99.7 (2) 99.7 (2) 99.9 (15) 99.9 (15)
Bare Soil (532) 89.3 85.4 90.1 91.0 83.3 (4) 83.3 (4) 92.4 (21) 92.4 (21)
Bitumen (375) 97.8 98.5 98.9 99.3 98.9 (28) 98.9 (28) 99.1 (61) 99.1 (61)
Brick (514) 95.3 96.2 93.5 95.5 96.8 (8) 96.8 (8) 97.5 (41) 97.5 (41)
Shadow (231) 99.9 99.9 98.8 99.7 99.9 (9) 99.9 (9) 99.9 (38) 99.9 (38)

Average class accuracy 93.8 93.9 92.6 94.2 93.5 93.5 95.9 95.9
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