
A NEW APPROACH FOR MEASURING PHOTOSYNTHETIC LIGHT-USE EFFICIENCY FROM 
SPACE USING MULTI-ANGULAR SATELLITE OBSERVATIONS 

Thomas Hilker, Nicholas C. Coops, Forrest G. Hall, Alexei Lyapustin, T. Andrew Black, Yujie Wang 

Satellite remote sensing of Gross Primary Production (GPP) will greatly enhance our understanding of the 

terrestrial carbon cycle, as it allows globally continuous estimates of plant CO2 uptake at regular intervals 

from space [1]. Remotely sensed GPP can be defined as the product of the incident photosynthetically active 

radiation (the radiation between 400 and 700 nm wavelength, PAR), the fraction of PAR absorbed by the 

green canopy elements (fPAR) and the light-use efficiency  (gCMJ-1) with which the absorbed PAR is used to 

produce biomass [2, 3]. Recent decades have seen considerable progress determining PAR and fPAR from 

satellite observations [4, 5], remote sensing of , however, remains challenging. A possible means to 

determine  remotely is the photochemical reflectance index (PRI), a narrow waveband index that measures 

the photosynthetic activity of leaves using a xanthophyll absorption band at 531 nm. A large number of 

studies have demonstrated a relationship between  and PRI over a wide range of species plant functional 

types[6, 7], the same and other work, however, has also shown that PRI is affected by numerous other factors 

such as the sun-view geometry, leaf angle distribution, leaf area, canopy structure and pigment pool size, 

making an upscaling to landscape and global levels difficult [8, 9].  

A promising approach to resolve these dependencies 

is to characterize the anisotropy of the surface 

reflectance via continuous, multi-angular spectral 

observations. Using a tower-based, automated, multi-

angular spectroradiometer instrument (AMSPEC, 

Fig. 1), we demonstrated in previous work that stand-

level PRI reflectance observed in a Douglas-fir forest 

can be defined as a function of the sun-observer 

geometry, the sky condition at the time of 

measurement and the physiological status of the 

vegetation canopy observed (i.e. ) [8, 10]. This 

physiological component of the reflectance signal can 

be extracted by stratifying spectra into homogeneous subsets of observations with respect to both sky 

Fig 1: The AMSPEC radiometer system measures 

canopy reflectance at vertical zenith angles between 32°
and 78°, completing a full rotation in 15 min. 



conditions and tower measured  and subsequently modeling the bidirectional reflectance distribution (BRDF) 

of each of these strata [10]. The approach yielded a highly significant relationship between PRI and  (r2=0.82; 

p 0.01) throughout the year, and allowed, for the first time, a continuous, year round observation of  from 

PRI.  

Only a few studies exist that use satellite based estimates of PRI [11-13], and research has focussed on data 

acquired by the MODerate Resolution Imaging Spectroradiometer (MODIS). Its daily global coverage and its 

capacity to detect a narrow reflectance band at 531 nm make MODIS a suitable choice for determining ε from 

space [14]. While some progress has been made relating MODIS observations to eddy covariance (EC) 

measured , a number of key issues still exist. First, the sensor lacks a reference band at 570 nm (which has 

often been replaced by MODIS Band 12, centered at 551 nm), and Band 11 (531 nm) operates at a fairly 

coarse spatial resolution of 1km2. Second, the differences between the footprint of EC-measurements and the 

MODIS pixel geometry make a direct comparison between both data sources challenging. Finally, MODIS 

reflectance is affected by atmospheric scattering effects confounding the relationship between spaceborne PRI 

and ε.  

This study introduces a new approach for a spaceborne acquisition of ε using the MODIS satellite. Instead of 

comparing MODIS observations to the EC-measurements directly, ungridded, MODIS Level 1B swath data 

were related to tower-based AMSPEC observations of the same wavelength and viewing geometry, acquired 

at the time of each satellite overpass. This approach allowed a more spatially explicit comparison between 

stand level and spaceborne observations and importantly, it facilitated the direct use of the MODIS 

observations as a multi-angular dataset. A new Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm [15], was implemented to correct for atmospheric effects independent of the satellites 

viewing geometry (Fig. 2). MAIAC features a time series approach which uses an image-based rather than 

pixel-based processing technique for simultaneous retrievals of atmospheric aerosol and surface bidirectional 

reflectance (BRDF). The algorithm was tested at a 60 year-old Douglas-fir stand and a 90 year-old Aspen 

stand located in Coastal British Columbia and Northern Saskatchewan, Canada, respectively. A strong 

relationship existed between tower-based and spaceborne PRI observations (r2=0.74, p<0.01) throughout the 

vegetation period (Fig. 3a). Swath (non-gridded) observations yielded stronger correlations than gridded data 

(r2=0.58, p<0.01, Fig. 3b) both of which included forward and backscatter observations. The multi-angular 

implementation of atmospheric correction showed much enhanced results compared to the use of a 

conventional single orbit atmospheric correction (r2<0.36, p<0.01). Spaceborne PRI values were strongly 

related to canopy shadow fractions and varied with different levels of ε.  

We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological 

changes from space throughout the observation period. The use of the multi-angular spectro-radiometer as  
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