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1. INTRODUCTION

In this paper, a method is proposed for detecting Polarimetric Synthetic Aperture Radar (PolSAR) targets. The proposed method

is a combination of the Target Scattering Vector Model (TSVM) and the Generalized Likelihood Ratio Test - Linear Quadratic

(GLRT-LQ) detector. The TSVM provides an unique and roll-invariant decomposition of the observed target vector by means of

four independent parameters. The combination of those two methods will allow the detection of any oriented targets (trihedral,

dihedral, dipole, helix, . . .).

This paper is organized as follows. The context of the study is first described. Then, the TSVM algorithm is exposed.

Next, the proposed algorithm for a roll-invariant target detection is presented. Then, some detection results are shown on a real

PolSAR data-set acquired by the RAMSES sensor at X-band.

2. ROLL-INVARIANT DECOMPOSITION

2.1. Problem formulation

Let kdip and kdih be respectively the steering vectors in the Pauli basis of two oriented dipole and dihedral. They are are

respectively defined by:

kdip =
1√
2

⎡
⎢⎣

1
cos(2ψ)
sin(2ψ)

⎤
⎥⎦ and kdih =

⎡
⎢⎣

0
cos(2ψ)
sin(2ψ)

⎤
⎥⎦ (1)

where ψ is the orientation of the maximum polarization with respect to the horizontal polarization [1].

Consequently, for a roll invariant-target dipole or dihedral detection, the tilt angle ψ should be removed. In 1993, Krogager

has proposed an algorithm to derive ψ which uses the phase difference between right-right (SRR) and left-left (SLL) circular

polarizations of the scattering matrix S [2]. SRR and SLL are respectively defined by SRR = (SHH − SV V + 2jSHV ) /2 and

SLL = (SV V − SHH + 2jSHV ) /2.

The expression of the orientation angle given by Korgager is ψKrogager =
[
Arg

(
SRRS∗

LL + π
)]

/4. This estimated

orientation angle ψKrogager is valid under certain condition on the target. To overcome this problem, authors propose to apply

the TSVM method which provides an unique and roll-invariant decomposition of any targets [1].



2.2. The Target Scattering Vector Model
The TSVM, proposed by Touzi in 2007, consists in the projection in the Pauli basis of the scattering matrix con-diagonalized

by the Takagi method [1]. It leads:

−→eT
SV = mejΦs

⎡
⎢⎣

1 0 0
0 cos(2ψ) − sin(2ψ)
0 sin(2ψ) cos(2ψ)

⎤
⎥⎦

⎡
⎢⎣

cos αs cos(2τm)
sin αse

jΦαs

− j cos αs sin(2τm)

⎤
⎥⎦ (2)

The rotation angle ψ is used for the subtraction of the target orientation from the target vector. This step is named desying.

τm is the target helicity, it characterizes the symmetry of the target. m is the maximum amplitude return. αs and Φαs
are the

symmetric scattering type magnitude and phase. They are derived from the coneigenvalues μ1 and μ2 of the scattering matrix

S by:

tan(αs) ejΦαs =
μ1 − μ2

μ1 + μ2
. (3)

Because of the coneigenvalue phase ambiguity, Huynen’s orientation angle ψ should be re-evaluated. To remove this ambiguity,

the following relation is applied to restrict the interval of ψ to [−π/4, π/4]:

−→eT
SV(Φs, ψ, τm, m, αs, Φαs) = −→eT

SV(Φs, ψ ± π

2
,−τm, m,−αs, Φαs). (4)

As the last term of (2) is independent of the target orientation angle, it yields that the four parameters m, αs, Φαs
and τm are roll-

invariant. In the following, the TSVM method is first applied on the original PolSAR data-set to provide a roll-invariant target

vector. To compute the target orientation angle with the TSVM decomposition, the following relation is implemented [3] [4] [5]:

ψ =
1
2

Arctan

⎛
⎝ 2�e

{
(S∗

HH + S∗
V V )SHV

}

�e
{

(S∗
HH + S∗

V V )(SHH − SV V )
}

⎞
⎠ . (5)

2.3. Comparison between ψ and ψKrogager

According to the TSVM, the following relation between the orientation angle ψ estimated by the TSVM method and ψKrogager

estimated with the phase difference between right-right and left-left circular polarizations can be proved:

ψ = ψKrogager − 1
4

Arctan

(
tan(αs) sin(Φαs

)
tan(αs) cos(Φαs) + sin(2τm)

)
+

1
4

Arctan

(
tan(αs) sin(Φαs

)
tan(αs) cos(Φαs) − sin(2τm)

)
. (6)

Fig. 1 shows a comparison between the orientation angle ψ estimated via the TSVM and ψKrogager as a function of three

roll-invariant TSVM parameters: τm, Φαs and αs. Fig. 1(a) shows the evolution of ψ and ψKrogager with the helicity τm

for αs = π/3 and Φαs = π/3. Fig. 1(b) and Fig. 1(c) show respectively this relation as a function of the target scattering

phase Φαs for αs = π/3 and τm = π/8, and as a function of αs for Φαs = π/3 and τm = π/8. For τm = 0, the target is

symmetric. It leads that ψ is equal to ψKrogager, as observed in black in Fig. 1(a). Moreover, for a null target scattering phase

Φαs , ψKrogager and ψ are equal. Similar observations can be done for αs = 0 and αs = π/2 as shown in Fig. 1(c).

For τm = 0, Φαs
= 0, αs = 0 or αs = π/2, the orientation angle estimated by the phase difference between right-right

and left-left circular polarizations is equal to this estimated by the TSVM. It leads that both tilt angles are equal for a wide class

of targets including trihedral, dihedral, helix, dipole, quarter wave, . . . For all other cases, the orientation angle ψKrogager is

biased, and ψ should be used instead for a roll-invariant target characterization.

3. ROLL-INVARIANT TARGET DETECTION

The general principle of the proposed roll-invariant target detection algorithm can be divided into five steps. First, the orientation

angle is computed and the ”roll-invariant” target vectir is extracted. Then, the covariance matrix of the clutter is estimated. Next,



(a) (b) (c)

Fig. 1. Comparison between ψ and ψKrogager: (a) as a function of τm for αs = π/3 and Φαs
= π/3, (b) as a function of Φαs

for αs = π/3 and τm = π/8 and (c) as a function of αs for Φαs = π/3 and τm = π/8

the similarity measure between the steering vector and the ”roll-invariant” target vector is computed. The false alarm probability

is fixed, and finally we conclude or not on the detction.

3.1. GLRT-LQ detector

The Generalized Likelihood Ratio Test - Linear Quadratic (GLRT-LQ) detector can be used to detect a particular target. Let p

be a steering vector and k the observed signal. The GLRT-LQ between p and k is given by [6]:

Λ ([M ]) =
|pH [M ]−1k|2

(pH [M ]−1p) (kH [M ]−1k)

H1

≷
H0

λ (7)

where [M ] is the covariance matrix of the population under the null hypothesis H0, i.e. the observed signal is only the clutter.

In general, the covariance matrix is unknown. One solution consists in estimating the covariance matrix [M ] by [M̂ ]FP ,

the fixed point covariance matrix estimator. It is the maximum likelihood estimator of the normalized covariance matrix under

the deterministic texture in a Spherically Invariant Random Process. Its expression is given by the solution of the following

recursive equation [7]:

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N∑
i=1

kikH
i

kH
i [M̂ ]−1

FP ki

. (8)

Replacing [M ] by [M̂ ]FP in (7) leads to an adaptive version of the GLRT-LQ detector.

3.2. Optimal KummerU Detector (OKUD)

For a Fisher distributed texture, it has been proved that the target scattering vector follows a KummerU PDF [8]. Based on this

multivariate statistics, the Optimal KummerU Detector can be constructed, its expression is given by :

U

„
p +M; 1 + p− L;

L
Mm

(k− p)H [M ]−1(k− p)

«

U

„
p +M; 1 + p− L;

L
Mm

kH [M ]−1k

« H1
≷
H0

λ (9)

where m, L and M are the Fisher parameters. m is a scale parameter, L and M are two shape parameters. U (·; ·; ·) is the

confluent hypergeometric function of the second kind (KummerU).

For a KummerU distributed clutter, the exact ML estimator of the covariance matrix [M̂ML] is given by [9]:

[M̂ML] =
p +M

N

„ L
Mm

« NX
i=1

U

„
p + 1 +M; 2 + p− L;

L
Mm

kH
i [M̂ML]

−1
ki

«

U

„
p +M; 1 + p− L;

L
Mm

kH
i [M̂ML]

−1
ki

« kik
H
i . (10)



4. DETECTION RESULTS ON A RAMSES X-BAND DATA-SET

In this section, a real data-set acquired by the RAMSES sensor at X-band is analyzed. Fig. 2 shows a colored composition

in the Pauli basis of the target vector. This data-set is composed by two particular targets: a dihedral (in green) and a narrow

diplane (in red). Both GLRT-LQ Krogager (tilt angle estimated by ψKrogager) and GLRT-LQ TSVM detectors are applied

(a) (b) (c)

Fig. 2. Toulouse, RAMSES PolSAR data, X-band (150 × 150 pixels). Colored composition in the Pauli basis of the target

vector [k]1-[k]3-[k]2. Images containing a dihedral (a) and a narrow diplane (b). (c) Detector characteristics for the dihedral and

the the narrow diplane

on this data-set. Fig. 2(c) shows the criterion characteristics for the dihedral and narrow diplane. As those two targets have

theoretically a null helicity τm, both detectors should have similar performance. For a fixed false alarm probability of 5×10−3,

the detection treshold is λ = 0.931. For the dihedral, The GLRT-LQ TSVM is able to detect the target (0.956 > λ) whereas the

GLRT-LQ Krogager detector fails (0.912 < λ).
5. CONCLUSION

In this paper, authors have proposed to the use target scattering vector model to extract the roll-invariant target vector. Some

comparisons have been done between the orientation angle estimated with the phase difference between right-right and left-

left circular polarizations and this issued from the TSVM. Next, authors have proposed to use the TSVM for a roll-invariant

target detection. The GLRT-LQ similarity measure has been implemented and validated on high resolution PolSAR data for the

detection of particular targets. In the final version of this paper, authors propose to use Optimal KummerU Detector as similarity

measure. It takes into account the statistics of the PolSAR clutter. Detection performance of this new detector will be analyzed.
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