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1. INTRODUCTION 

 

The aim of this study is target detection and classification of partial targets employing a physical rather than a 

statistical technique. With a similar approach, the authors already developed a single target detector [1-3]. A 

single target exhibits a fixed polarization in time/space and its scattering behavior can be characterized using a 

unique scattering (Sinclair) matrix or equivalently a scattering vector: [ ]( ) [ ]TkkkkSTracek 4321 ,,,
2

1
=Ψ= , where [S] 

is the scattering matrix and Ψ  is a complete set of 2x2 basis matrices under a Hermitian inner product [4, 5]. In 

the case of reciprocal medium and monostatic sensor, k is three dimensional complex [6]. Finally, the scattering 

mechanism is kk=ω . The target observed by a SAR system is not an idealized scattering target, but a 

combination of different targets which we refer to as a partial target. In order to characterize a partial target the 

second order statistics are required. In this context the target covariance matrix can be estimated as [ ] T
kkC

*
⋅= , 

where .  is the finite averaging operator. In general, the scattering vector in a generic basis is [ ]Tkkkk 321 ,,= , with 

1k , 
2k  and 

3k  complex numbers. If two different scattering mechanisms 
1ω  and 

2ω  are considered, the 

polarimetric coherence is: [ ]
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2. SINGLE TARGET DETECTOR 

 

A single target detector based on eq.1 has already been developed and published in [1-3]. The aim of this section 

is to provide a geometrical interpretation which will allow the extension of the concept to partial target detection.  

It is always possible to characterize a (normalized) single target with a scattering mechanism 
T

ω . Moreover, the 

basis of the space can be chosen in order to have the target of interest limited only to one component. Hence, 

[ ]T
T 0,0,1=ω . Subsequently, a second scattering mechanism 

P
ω , which is close to 

T
ω  (in the geometrical space), 

is generated with a perturbation technique. The matrix corresponding to the metric of the target space can be 



calculated with: [ ] ( )2
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1 ,, kkkdiagP = . The coherence between target and perturbed target in the new 

metric (normalized weighted inner product) can be calculated with  
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Where the first component is the target of interest and the second and third ones are the clutter. Finally, the 

detector is constructed setting a threshold on 
dγ .  

 

2. PARTIAL TARGET DETECTOR AND CLASSIFIER 

 

The aim of this section is to extend the geometrical single target detector described in section 2 to partial 

targets. First step is to construct a formalism similar to the single target one which is proper for partial targets. 

The second order statistics are needed. A feature partial scattering vector is introduced: 

[ ]( ) [ ] [ ]TT
kkkkkkkkkttttttCTracet 3

*

23

*

12

*

1

2

3

2

2

2

1654321 ,,,,,,,,,, ==Ψ= , where Ψ  is a complete set of 6x6 basis 

matrices under a Hermitian inner product. t lies in a subspace of 6C . In particular, it has the first three elements 

real positive and the second three complex. Then a change of basis is performed which makes the target of 

interest lie only on 1 component: [ ]TTt 0,0,0,0,0,1=  and [ ]TP gfedcbat ,,,,,,= . In order to calculate the weighted 

inner product, a matrix [A] is constructed with a basis of 6C  obtained by a Gram-Schmidt ortho-normalization 

where the first axis is represented by the vector 
Tt . If 

T
tu =1

, 
2u , 

3u , 
4u , 

5u  and 
6u  represent the ortho-normal 

basis, the [A] matrix can be calculated as: [ ] ( )tutututututtdiagA
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Once we obtain the partial target detector we can use it as a preliminary stage to produce a series of masks which 

are used to perform classification. The pixel is allocated in a class if the co-respective mask is bigger than the 

others. If 
nmm ,...,1
 are the n masks obtained, a pixel is located in the class c where: { }i

ni
c mm

,...,1
max
=

= .  (4) 

 

3. VALIDATION 

 

In order to validate and test the potential of the classifier, this is applied on fully polarimetric SAR datasets. We 

are aware of the importance to develop future applications for satellite data, for this reason, we decided to 



validate with X band TerraSAR-X and L band ALOS PALSAR. In figure 1 the supervised classifier is applied on 

TerraSAR-X data. The latter were acquired in Germany over a mix of agricultural and urban areas. Figure 1.a 

depicts the Pauli RGB image as comparison. The areas chosen as classes are labeled. We decided to use the Pauli 

RGB image for the selection of the areas, since for some instance we can relate the colors with physical 

characteristics of the scatterers. In Figure 1.b is presented the proposed supervised classification with 4 classes. 

Figure 1.c presents a comparison with the supervised Wishart, which uses pixel statistics (please note the color 

coding of the masks is different). The results appear to be in good agreement, differences are mainly to be found 

on regions not employed for classification training. Those areas are in between two classes therefore they can be 

interpreted differently by the two classifiers. Another new feature in the proposed classifier is the presence of 

black areas. These are regions which do not fall in any class (mainly man-made targets and buildings). It is 

important to identify these areas and not force them into the closest class. In case we are interested in the 

classification of those points, we can treat them separately with the detector. Finally, the technique proposed is 

fully physical; we believe that the results are subject of improvement once a subsequent iterative statistic stage 

will be added. Figure 2 presents a similar scenario using an L-band ALOS PALSAR dataset. The scene is 

acquired in China, close to the city of Taian. In this example, another important advantage of the proposed 

classifier can be observed. Comparing the two classifiers, it seems that the decision of the proposed one is not 

affected by the total intensity of the signal. The mountainous region with layover of bare ground (right hand side) 

is classified as the bare ground in the valley (left hand side). Conversely, Wishart locates the layovered region in 

three different classes (among bare ground, forest and urban area). The new detector is not influenced by changes 

in overall amplitude of the coherence matrix, but exclusively on the weight of the matrix elements. 

 

4. CONCLUSIONS 

 

A geometric interpretation of the single target detector [1-3] has been provided. Subsequently, a new partial 

target detector has been developed extending the vector formulation from single targets to partially polarized 

targets. The partial target detector was then utilized as a first stage for a novel supervised classifier. Validation 

against satellite data (TerraSAR-X and ALOS) is provided showing the capability of the classifier to separate 

different areas. Moreover, a comparison with the Wishart supervised classifier is provided, showing two main 

enhancements: a) rejection of targets which do not belong to any class b) improved classification against changes 

in the overall amplitude of the coherence matrix, since the algorithm works solely on the polarimetric 

information. Therefore, changes in amplitude due to layover are not anymore a problem for the new classifier 

(making the algorithm particularly suited for mountainous regions). Future work will see application of this filter 

to improved land use classification and geophysical parameter estimation from polarimetric data from Radarsat2, 

Terrasar-X and ALOS_PALSAR. 
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Figure 1. Partial target detection on TerraSAR-X data (Germany): (a) RGB Pauli image of the area (b) 

supervised classification after the detection of 4 partial targets (c) Wishart supervised classification (same classes 

as before). 
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Figure 2. Partial target detection on ALOS data (China): as Figure 1. 

 


