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1. INTRODUCTION

In the context of Polarimetric Synthetic Aperture Radar (PolSAR) imagery, the extraction of roll-invariant parameters is one of

the major point of interest for the segmentation, classification and detection. In 2007, for the monostatic case, Ridha Touzi has

proposed a new Target Scattering Vector Model (TSVM) to extract physical parameters [1]. Based on the Kennaugh-Huynen

decomposition, this model allows to extract four roll-invariant parameters.

For the bistatic case, the reciprocity assumption is in general no more valid. This paper presents a generalization of the

TSVM when the cross-polarization terms are not equal. First, a presentation of bistatic polarimetry is exposed by means of the

Kennaugh-Huynen decomposition [2]. Then, the TSVM is introduced as a projection of the scattering matrix in the Pauli basis

to extract roll-invariant parameters [1] and a comparison with the monostatic case is carried out. Finally, a presentation of the

computation of the TSVM parameters is exposed.

2. THE KENNAUGH-HUYNEN CON-DIAGONALIZATION

Coherent targets are fully described by their scattering matrix S. For the context bistatic polarimetry, S is a complex 2 × 2

matrix, S =

[
SHH SHV

SV H SV V

]
where the cross-polarization elements SHV and SV H are not equal in general.

Kennaugh and Huynen have proposed to apply the characteristic decomposition on the scattering matrix to retrieve physical

parameters [2] [3] [4]. The Kennaugh-Huynen decomposition is parametrized by means of 8 independent parameters: θR, τR,

θE , τE , ν, μ, κ and γ by [2] [5] [6]:

S = e−jθRσ3 e−jτRσ2 e−jνσ1 S0 ejνσ1 e−jτEσ2 ejθEσ3 (1)

where:

S0 = μejκ

[
1 0
0 tan2 γ

]
and ejασk = σ0 cos α + jσk sin α. (2)

σi are the spin Pauli matrices.θR and θE are the tilt angles. τR and τE are the helicity. The subscript R and E stand respectively

for reception and emission. μ is the maximum amplitude return. γ and ν are respectively referred as the characteristic and skip

angles. κ is the absolute phase of the target, this term is generally ignored except for interferometric applications.



Moreover, it can be shown that:

e−jνσ1 S0 ejνσ1 =

[
μe2j(ν+κ/2) 0

0 μ tan2 γ e−2j(ν−κ/2)

]
=

[
λ1 0
0 λ2

]
(3)

where λ1 et λ2 are the two complex con-eigenvalues of S.

3. THE TARGET SCATTERING VECTOR MODEL
3.1. Definition

The TSVM consists in the projection in the projection in the Pauli basis of the scattering matrix con- diagonalized by the Takagi

method. It yields that kP = 1/
√

2
[
SHH + SV V , SHH − SV V , SHV + SV H , j(SHV − SV H)

]T

. After some mathematical

manipulations, one can express the target vector kP by means of Huynen’s parameters by:

kP =
1√
2

⎡
⎢⎢⎢⎢⎣

(λ1 + λ2) cos(τR + τE) cos(θR − θE) + j(λ1 − λ2) sin(τE − τR) sin(θE − θR)
(λ1 − λ2) cos(τR − τE) cos(θR + θE) + j(λ1 + λ2) sin(τR + τE) sin(θR + θE)
(λ1 − λ2) cos(τR − τE) sin(θR + θE) − j(λ1 + λ2) sin(τR + τE) cos(θR + θE)
(λ1 − λ2) sin(τE − τR) cos(θR − θE) + j(λ1 + λ2) cos(τr + τE) sin(θE − θR)

⎤
⎥⎥⎥⎥⎦ . (4)

By following the same procedure as proposed by Touzi in [1], one can introduce the symmetric scattering type magnitude and

phase, denoted αs and Φαs
by:

tan(αs) ejΦαs =
λ1 − λ2

λ1 + λ2
. (5)

By combining (4) and (5), it yields:

kP = μ ejΦs

⎡
⎢⎢⎢⎢⎣

cos αs cos(τR + τE) cos(θR − θE) + j sin αse
jΦαs sin(τE − τR) sin(θE − θR)

sin αse
jΦαs cos(τR − τE) cos(θR + θE) + j cos αs sin(τR + τE) sin(θR + θE)

sin αse
jΦαs cos(τR − τE) sin(θR + θE) − j cos αs sin(τR + τE) cos(θR + θE)

sin αse
jΦαs sin(τE − τR) cos(θR − θE) + j cos αs cos(τr + τE) sin(θE − θR)

⎤
⎥⎥⎥⎥⎦ . (6)

Φs corresponds to the phase of λ1 + λ2. According to (6), one can decompose kP as the product of three terms:

kP = μ ejΦs

⎡
⎢⎢⎣

1 0 0 0

0 cos(θR + θE) − sin(θR + θE) 0

0 sin(θR + θE) cos(θR + θE) 0

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos(θR − θE) 0 0 − sin(θR − θE)

0 1 0 0

0 0 1 0

− j sin(θR − θE) 0 0 −j cos(θR − θE)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos αs cos(τR + τE)

sin αsejΦαs cos(τR − τE)

− j cos αs sin(τR + τE)

j sin αsejΦαs sin(τE − τR)

⎤
⎥⎥⎦ . (7)

It can be noticed that the first and second terms are ”rotation” matrices which depend only on the tilt angles θR and θE .

3.2. Roll-invariant target vector

As a consequence, for the bistatic case, the expression of the roll-invariant target vector korient−inv
P is given by:

korient−inv
P = μ

⎡
⎢⎢⎢⎢⎣

cos αs cos(τR + τE)
sin αse

jΦαs cos(τR − τE)
− j cos αs sin(τR + τE)

j sin αse
jΦαs sin(τE − τR)

⎤
⎥⎥⎥⎥⎦ . (8)

In bistatic polarimetry, five parameters (namely μ, τR, τE , αs and Φαs
) are necessary for an unambiguous description of a

coherent target.



3.3. Link with the monostatic case

The monostatic case can be retrieved from the bistatic case by assuming θ = θR = θE and τm = τR = τE . Consequently,

when the reciprocity assumption holds, the roll-invariant target vector, introduced by Touzi, is:

korient−inv
P = μ

⎡
⎢⎢⎢⎢⎣

cos αs cos(2τm)
sin αse

jΦαs

− j cos αs sin(2τm)
0

⎤
⎥⎥⎥⎥⎦ . (9)

4. TSVM PARAMETERS COMPUTATION

4.1. The Kennaugh matrix

The Kennaugh matrix K is another representation of the scattering matrix S, its expression is given by K = 2A∗WA−1 with

W = S ⊗ S. ⊗ is the Kronecker product, and:

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0

⎤
⎥⎥⎥⎥⎦ . (10)

4.2. The Kennaugh matrices of orders 0 to 2

Let O1, O2 and O3 be the three ”rotation matrices” defined by [5]:

O1(2ν) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos(2ν) − sin(2ν)
0 0 sin(2ν) cos(2ν)

⎤
⎥⎥⎥⎥⎦ ,O2(2τ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 cos(2τ) 0 sin(2τ)
0 0 1 0
0 − sin(2τ) 0 cos(2τ)

⎤
⎥⎥⎥⎥⎦ ,O3(2θ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 sin(2θ) cos(2θ) 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

(11)

The Kennaugh matrices of orders 0 to 2, denoted K(i), are defined by:

⎧⎪⎨
⎪⎩

K(2) = O3(−2θR) K O3(2θE)
K(1) = O2(2τR) K(2) O2(−2τE)
K(0) = O1(−2ν) K(1) O1(2ν)

(12)

4.3. Link with the TSVM parameters

4.3.1. Tilt angles

In practice, thanks to the scattering scattering matrix S, the Kennaugh matrix K is first computed. The tilt angles θE and θR

are then directly deduced from the Kennaugh matrix K by [7]:

tan(2θE) =
K02

K01
and tan(2θR) =

K20

K10
. (13)

Once θE and θR are found, the Kennaugh matrix of order 2, namely K(2), is computed according to (12). Moreover, as this

matrix does not depend on the tilt angles, it can be viewed as the roll-invariant Kennaugh matrix.



4.3.2. Helicity angles

Similarly, the helicity angles τR are τE are issued from the Kennaugh matrix of order 2 by [7]:

tan(2τR) =
K(2)

30

K(2)
10

and tan(2τE) =
K(2)

03

K(2)
01

. (14)

4.3.3. ν and γ

Next, ν and γ are deduced from the Kennaugh matrices of order 1 et 0 by:

tan(4ν) =
K(1)

32

K(1)
33

and cos(2γ) = A ±
√

A2 − 1 (15)

with A =
K(0)

11

K(0)
01

. The solution adopted is the A ±√
A2 − 1 ranging in the interval [−1, 1].

4.3.4. αs and Φαs

Finally, the symmetric scattering type magnitude and phase, αs and Φαs
, are directly deduced from parameters ν and γ by:

tan(αs) ejΦαs =
λ1 − λ2

λ1 + λ2
=

e2jν − e−2jν tan2 γ

e2jν + e−2jν tan2 γ
= B. (16)

It yields:

tanαs = |B| and Φαs = arg(B). (17)

5. CONCLUSION

In this paper, a generalization of the Target Scattering Vector Model to the bistatic case has been proposed. Based on the

Kennaugh-Huynen decomposition, five parameters are necessary for an unambiguous description of a coherent target. The

”monostatic” TSVM has been retrieved as a particular case of the proposed method. In the final version of the paper, author

will present results on PolSAR data. Moreover, the roll-invariant incoherent target decomposition (ICTD) inspired from Cloude-

Pottier ICTD will be introduced for the bistatic case, and a comparison with the so-called α−β model parameters will be carried

out.
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