EXTENSION OF THE TARGET SCATTERING VECTOR MODEL TO THE BISTATIC CASE

Lionel BOMBRUN ${ }^{1,2}$
${ }^{1}$ Grenoble-Image-sPeech-Signal-Automatics Lab, CNRS
GIPSA-lab DIS/SIGMAPHY, Grenoble INP - BP 46, 38402 Saint-Martin-d'Hères, FRANCE
Tel: +33 476826424 - Fax: +33 476574790 - Email: lionel.bombrun @gipsa-lab.grenoble-inp.fr
${ }^{2}$ SONDRA Research Alliance
Plateau du Moulon, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette Cedex, FRANCE
Tel: +33 169851804 - Fax: +33 169851809

1. INTRODUCTION

In the context of Polarimetric Synthetic Aperture Radar (PolSAR) imagery, the extraction of roll-invariant parameters is one of the major point of interest for the segmentation, classification and detection. In 2007, for the monostatic case, Ridha Touzi has proposed a new Target Scattering Vector Model (TSVM) to extract physical parameters [1]. Based on the Kennaugh-Huynen decomposition, this model allows to extract four roll-invariant parameters.

For the bistatic case, the reciprocity assumption is in general no more valid. This paper presents a generalization of the TSVM when the cross-polarization terms are not equal. First, a presentation of bistatic polarimetry is exposed by means of the Kennaugh-Huynen decomposition [2]. Then, the TSVM is introduced as a projection of the scattering matrix in the Pauli basis to extract roll-invariant parameters [1] and a comparison with the monostatic case is carried out. Finally, a presentation of the computation of the TSVM parameters is exposed.

2. THE KENNAUGH-HUYNEN CON-DIAGONALIZATION

Coherent targets are fully described by their scattering matrix \mathbf{S}. For the context bistatic polarimetry, \mathbf{S} is a complex 2×2 matrix, $\mathbf{S}=\left[\begin{array}{cc}S_{H H} & S_{H V} \\ S_{V H} & S_{V V}\end{array}\right]$ where the cross-polarization elements $S_{H V}$ and $S_{V H}$ are not equal in general.

Kennaugh and Huynen have proposed to apply the characteristic decomposition on the scattering matrix to retrieve physical parameters [2] [3] [4]. The Kennaugh-Huynen decomposition is parametrized by means of 8 independent parameters: θ_{R}, τ_{R}, $\theta_{E}, \tau_{E}, \nu, \mu, \kappa$ and γ by [2] [5] [6]:

$$
\begin{equation*}
\mathbf{S}=e^{-j \theta_{R} \sigma_{3}} e^{-j \tau_{R} \sigma_{2}} e^{-j \nu \sigma_{1}} \mathbf{S}_{\mathbf{0}} e^{j \nu \sigma_{1}} e^{-j \tau_{E} \sigma_{2}} e^{j \theta_{E} \sigma_{3}} \tag{1}
\end{equation*}
$$

where:

$$
\mathbf{S}_{\mathbf{0}}=\mu e^{j \kappa}\left[\begin{array}{cc}
1 & 0 \tag{2}\\
0 & \tan ^{2} \gamma
\end{array}\right] \text { and } e^{j \alpha \sigma_{k}}=\sigma_{0} \cos \alpha+j \sigma_{k} \sin \alpha .
$$

σ_{i} are the spin Pauli matrices. θ_{R} and θ_{E} are the tilt angles. τ_{R} and τ_{E} are the helicity. The subscript R and E stand respectively for reception and emission. μ is the maximum amplitude return. γ and ν are respectively referred as the characteristic and skip angles. κ is the absolute phase of the target, this term is generally ignored except for interferometric applications.

Moreover, it can be shown that:

$$
e^{-j \nu \sigma_{1}} \mathbf{S}_{\mathbf{0}} e^{j \nu \sigma_{1}}=\left[\begin{array}{cc}
\mu e^{2 j(\nu+\kappa / 2)} & 0 \tag{3}\\
0 & \mu \tan ^{2} \gamma e^{-2 j(\nu-\kappa / 2)}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

where λ_{1} et λ_{2} are the two complex con-eigenvalues of \mathbf{S}.

3. THE TARGET SCATTERING VECTOR MODEL

3.1. Definition

The TSVM consists in the projection in the projection in the Pauli basis of the scattering matrix con- diagonalized by the Takagi method. It yields that $\mathbf{k}_{\mathbf{P}}=1 / \sqrt{2}\left[S_{H H}+S_{V V}, S_{H H}-S_{V V}, S_{H V}+S_{V H}, j\left(S_{H V}-S_{V H}\right)\right]^{T}$. After some mathematical manipulations, one can express the target vector $\mathbf{k}_{\mathbf{P}}$ by means of Huynen's parameters by:

$$
\mathbf{k}_{\mathbf{P}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\left(\lambda_{1}+\lambda_{2}\right) \cos \left(\tau_{R}+\tau_{E}\right) \cos \left(\theta_{R}-\theta_{E}\right)+j\left(\lambda_{1}-\lambda_{2}\right) \sin \left(\tau_{E}-\tau_{R}\right) \sin \left(\theta_{E}-\theta_{R}\right) \tag{4}\\
\left(\lambda_{1}-\lambda_{2}\right) \cos \left(\tau_{R}-\tau_{E}\right) \cos \left(\theta_{R}+\theta_{E}\right)+j\left(\lambda_{1}+\lambda_{2}\right) \sin \left(\tau_{R}+\tau_{E}\right) \sin \left(\theta_{R}+\theta_{E}\right) \\
\left(\lambda_{1}-\lambda_{2}\right) \cos \left(\tau_{R}-\tau_{E}\right) \sin \left(\theta_{R}+\theta_{E}\right)-j\left(\lambda_{1}+\lambda_{2}\right) \sin \left(\tau_{R}+\tau_{E}\right) \cos \left(\theta_{R}+\theta_{E}\right) \\
\left(\lambda_{1}-\lambda_{2}\right) \sin \left(\tau_{E}-\tau_{R}\right) \cos \left(\theta_{R}-\theta_{E}\right)+j\left(\lambda_{1}+\lambda_{2}\right) \cos \left(\tau_{r}+\tau_{E}\right) \sin \left(\theta_{E}-\theta_{R}\right)
\end{array}\right]
$$

By following the same procedure as proposed by Touzi in [1], one can introduce the symmetric scattering type magnitude and phase, denoted α_{s} and $\Phi_{\alpha_{s}}$ by:

$$
\begin{equation*}
\tan \left(\alpha_{s}\right) e^{j \Phi_{\alpha_{s}}}=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}} \tag{5}
\end{equation*}
$$

By combining (4) and (5), it yields:

$$
\mathbf{k}_{\mathbf{P}}=\mu e^{j \Phi_{s}}\left[\begin{array}{c}
\cos \alpha_{s} \cos \left(\tau_{R}+\tau_{E}\right) \cos \left(\theta_{R}-\theta_{E}\right)+j \sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \sin \left(\tau_{E}-\tau_{R}\right) \sin \left(\theta_{E}-\theta_{R}\right) \tag{6}\\
\sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \cos \left(\tau_{R}-\tau_{E}\right) \cos \left(\theta_{R}+\theta_{E}\right)+j \cos \alpha_{s} \sin \left(\tau_{R}+\tau_{E}\right) \sin \left(\theta_{R}+\theta_{E}\right) \\
\sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \cos \left(\tau_{R}-\tau_{E}\right) \sin \left(\theta_{R}+\theta_{E}\right)-j \cos \alpha_{s} \sin \left(\tau_{R}+\tau_{E}\right) \cos \left(\theta_{R}+\theta_{E}\right) \\
\sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \sin \left(\tau_{E}-\tau_{R}\right) \cos \left(\theta_{R}-\theta_{E}\right)+j \cos \alpha_{s} \cos \left(\tau_{r}+\tau_{E}\right) \sin \left(\theta_{E}-\theta_{R}\right)
\end{array}\right]
$$

Φ_{s} corresponds to the phase of $\lambda_{1}+\lambda_{2}$. According to (6), one can decompose $\mathbf{k}_{\mathbf{P}}$ as the product of three terms:
$\mathbf{k}_{\mathbf{P}}=\mu e^{j \Phi_{s}}\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \left(\theta_{R}+\theta_{E}\right) & -\sin \left(\theta_{R}+\theta_{E}\right) & 0 \\ 0 & \sin \left(\theta_{R}+\theta_{E}\right) & \cos \left(\theta_{R}+\theta_{E}\right) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \left(\theta_{R}-\theta_{E}\right) & 0 & 0 & -\sin \left(\theta_{R}-\theta_{E}\right) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -j \sin \left(\theta_{R}-\theta_{E}\right) & 0 & 0 & -j \cos \left(\theta_{R}-\theta_{E}\right)\end{array}\right]\left[\begin{array}{c}\cos \alpha_{s} \cos \left(\tau_{R}+\tau_{E}\right) \\ \sin \alpha_{s} e^{j \Phi_{\alpha_{s}} \cos \left(\tau_{R}-\tau_{E}\right)} \\ -j \cos \alpha_{s} \sin \left(\tau_{R}+\tau_{E}\right) \\ j \sin \alpha_{s} e^{j \Phi_{\alpha_{s}} \sin \left(\tau_{E}-\tau_{R}\right)}\end{array}\right]$.
It can be noticed that the first and second terms are "rotation" matrices which depend only on the tilt angles θ_{R} and θ_{E}.

3.2. Roll-invariant target vector

As a consequence, for the bistatic case, the expression of the roll-invariant target vector $\mathbf{k}_{\mathbf{P}}^{\text {orient-inv }}$ is given by:

$$
\mathbf{k}_{\mathbf{P}}^{\text {orient-inv }}=\mu\left[\begin{array}{c}
\cos \alpha_{s} \cos \left(\tau_{R}+\tau_{E}\right) \tag{8}\\
\sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \cos \left(\tau_{R}-\tau_{E}\right) \\
-j \cos \alpha_{s} \sin \left(\tau_{R}+\tau_{E}\right) \\
j \sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \sin \left(\tau_{E}-\tau_{R}\right)
\end{array}\right]
$$

In bistatic polarimetry, five parameters (namely $\mu, \tau_{R}, \tau_{E}, \alpha_{s}$ and $\Phi_{\alpha_{s}}$) are necessary for an unambiguous description of a coherent target.

3.3. Link with the monostatic case

The monostatic case can be retrieved from the bistatic case by assuming $\theta=\theta_{R}=\theta_{E}$ and $\tau_{m}=\tau_{R}=\tau_{E}$. Consequently, when the reciprocity assumption holds, the roll-invariant target vector, introduced by Touzi, is:

$$
\mathbf{k}_{\mathbf{P}}^{\text {orient-inv }}=\mu\left[\begin{array}{c}
\cos \alpha_{s} \cos \left(2 \tau_{m}\right) \tag{9}\\
\sin \alpha_{s} e^{j \Phi_{\alpha_{s}}} \\
-j \cos \alpha_{s} \sin \left(2 \tau_{m}\right) \\
0
\end{array}\right]
$$

4. TSVM PARAMETERS COMPUTATION

4.1. The Kennaugh matrix

The Kennaugh matrix \mathbf{K} is another representation of the scattering matrix \mathbf{S}, its expression is given by $\mathbf{K}=2 \mathbf{A}^{*} \mathbf{W A}^{-1}$ with $\mathbf{W}=\mathbf{S} \otimes \mathbf{S} . \otimes$ is the Kronecker product, and:

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \tag{10}\\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & j & -j & 0
\end{array}\right]
$$

4.2. The Kennaugh matrices of orders 0 to 2

Let $\mathbf{O}_{1}, \mathbf{O}_{\mathbf{2}}$ and $\mathbf{O}_{\mathbf{3}}$ be the three "rotation matrices" defined by [5]:
$\mathbf{O}_{\mathbf{1}}(2 \nu)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos (2 \nu) & -\sin (2 \nu) \\ 0 & 0 & \sin (2 \nu) & \cos (2 \nu)\end{array}\right], \mathbf{O}_{\mathbf{2}}(2 \tau)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (2 \tau) & 0 & \sin (2 \tau) \\ 0 & 0 & 1 & 0 \\ 0 & -\sin (2 \tau) & 0 & \cos (2 \tau)\end{array}\right], \mathbf{O}_{\mathbf{3}}(2 \theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (2 \theta) & -\sin (2 \theta) \\ 0 & \sin (2 \theta) & \cos (2 \theta) \\ 0 & 0 & 0 \\ 0 & 1\end{array}\right]$.
The Kennaugh matrices of orders 0 to 2 , denoted $\mathbf{K}^{(\mathbf{i})}$, are defined by:

$$
\left\{\begin{array}{l}
\mathbf{K}^{(\mathbf{2})}=\mathbf{O}_{\mathbf{3}}\left(-2 \theta_{R}\right) \mathbf{K} \mathbf{O}_{\mathbf{3}}\left(2 \theta_{E}\right) \tag{12}\\
\mathbf{K}^{(\mathbf{1})}=\mathbf{O}_{\mathbf{2}}\left(2 \tau_{R}\right) \mathbf{K}^{(\mathbf{2})} \mathbf{O}_{\mathbf{2}}\left(-2 \tau_{E}\right) \\
\mathbf{K}^{(\mathbf{0})}=\mathbf{O}_{\mathbf{1}}(-2 \nu) \mathbf{K}^{(\mathbf{1})} \mathbf{O}_{\mathbf{1}}(2 \nu)
\end{array}\right.
$$

4.3. Link with the TSVM parameters

4.3.1. Tilt angles

In practice, thanks to the scattering scattering matrix \mathbf{S}, the Kennaugh matrix \mathbf{K} is first computed. The tilt angles θ_{E} and θ_{R} are then directly deduced from the Kennaugh matrix \mathbf{K} by [7]:

$$
\begin{equation*}
\tan \left(2 \theta_{E}\right)=\frac{\mathbf{K}_{02}}{\mathbf{K}_{01}} \text { and } \tan \left(2 \theta_{R}\right)=\frac{\mathbf{K}_{20}}{\mathbf{K}_{10}} \tag{13}
\end{equation*}
$$

Once θ_{E} and θ_{R} are found, the Kennaugh matrix of order 2, namely $\mathbf{K}^{(2)}$, is computed according to (12). Moreover, as this matrix does not depend on the tilt angles, it can be viewed as the roll-invariant Kennaugh matrix.

4.3.2. Helicity angles

Similarly, the helicity angles τ_{R} are τ_{E} are issued from the Kennaugh matrix of order 2 by [7]:

$$
\begin{equation*}
\tan \left(2 \tau_{R}\right)=\frac{\mathbf{K}_{30}^{(2)}}{\mathbf{K}_{10}^{(2)}} \text { and } \tan \left(2 \tau_{E}\right)=\frac{\mathbf{K}_{03}^{(2)}}{\mathbf{K}_{01}^{(2)}} \tag{14}
\end{equation*}
$$

4.3.3. ν and γ

Next, ν and γ are deduced from the Kennaugh matrices of order 1 et 0 by:

$$
\begin{equation*}
\tan (4 \nu)=\frac{\mathbf{K}_{32}^{(1)}}{\mathbf{K}_{33}^{(1)}} \text { and } \cos (2 \gamma)=A \pm \sqrt{A^{2}-1} \tag{15}
\end{equation*}
$$

with $A=\frac{\mathbf{K}_{11}^{(0)}}{\mathbf{K}_{01}^{(0)}}$. The solution adopted is the $A \pm \sqrt{A^{2}-1}$ ranging in the interval $[-1,1]$.

4.3.4. α_{s} and $\Phi_{\alpha_{s}}$

Finally, the symmetric scattering type magnitude and phase, α_{s} and $\Phi_{\alpha_{s}}$, are directly deduced from parameters ν and γ by:

$$
\begin{equation*}
\tan \left(\alpha_{s}\right) e^{j \Phi_{\alpha_{s}}}=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{e^{2 j \nu}-e^{-2 j \nu} \tan ^{2} \gamma}{e^{2 j \nu}+e^{-2 j \nu} \tan ^{2} \gamma}=B \tag{16}
\end{equation*}
$$

It yields:

$$
\begin{equation*}
\tan \alpha_{s}=|B| \text { and } \Phi_{\alpha_{s}}=\arg (B) \tag{17}
\end{equation*}
$$

5. CONCLUSION

In this paper, a generalization of the Target Scattering Vector Model to the bistatic case has been proposed. Based on the Kennaugh-Huynen decomposition, five parameters are necessary for an unambiguous description of a coherent target. The "monostatic" TSVM has been retrieved as a particular case of the proposed method. In the final version of the paper, author will present results on PolSAR data. Moreover, the roll-invariant incoherent target decomposition (ICTD) inspired from CloudePottier ICTD will be introduced for the bistatic case, and a comparison with the so-called $\alpha-\beta$ model parameters will be carried out.

6. REFERENCES

[1] R. Touzi, "Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 1, pp. 73-84, January 2007.
[2] J.R. Huynen, Phenomenological Theory of Radar Targets, Academic Press, 1978.
[3] K. Kennaugh, "Effects of Type of Polarization On Echo Characteristics," Ohio State Univ., Research Foundation Columbus Antenna Lab, Tech. Rep. 389-4, 381-9, 1951.
[4] J.R. Huynen, "Measurement of the target scattering matrix," Proceedings of the IEEE, vol. 53, no. 8, pp. 936-946, August 1965.
[5] A.-L. Germond, Théorie de la Polarimétrie Radar en Bistatique, Ph.D. thesis, Université de Nantes, Nantes, France, 1999.
[6] Z.H. Czyz, "Fundamentals of Bistatic Radar Polarimetry Using the Poincare Sphere Transformations," Technical report, Telecommunications Research Institute, http://airex.tksc.jaxa.jp/pl/dr/20010100106/en, 2001.
[7] C. Titin-Schnaider, "Polarimetric Characterization of Bistatic Coherent Mechanisms," IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, pp. 1535-1546, May 2008.

