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Introduction 

Landslide susceptibility mapping aims to differentiate a land surface into homogeneous areas according to 

their probability of failure caused by mass-movement at specific locations. During last two decades 

various statistical methods were used in landslide susceptibility mapping. All these methods analyze the 

geo-environmental variables controlling landslide occurrence with respect to previous landslide events, 

either by means of bivariate or of multivariate frequentist statistics [3]. These frequentist methods, 

however, result in discrete parameter estimates with distribution properties based on the assumption of 

normality [5]. Bayesian methods, on the other hand, result in a probability distributions of the parameter 

estimates based on the data and on prior knowledge, thus facilitating uncertainty estimation procedures 

[4].  

The aim of this study is to develop and apply a Bayesian logistic regression (BLR) model for landslide 

susceptibility mapping. To do so we use the Bayesian paradigm to modify the commonly applied 

frequentist logistic regression (FLR) model. Uncertainty in parameter estimates is quantified by means of 

the posterior density distributions. The model consists of two steps. First, parameter estimates are 

obtained for each variable by means of FLR. The same variables are then used in a Bayesian framework 

for parameter estimation and the significance of each estimate is evaluated by means of the posterior 

density function obtained from the Bayesian analysis. Simulation of the model is done using MCMC 

methods. The methodology is applied to a landslide-prone road corridor in the northern Himalayas, in 

India. In the present study, nine different landslide influencing geo-environmental factors have been 

analyzed in their relation to the landslide occurrence data. These maps were derived from high resolution 

Cartosat-1 and Resourcesat-1 data (resolutions of 2.5m and 5.8m, respectively) along with auxiliary data 

like published maps and reports and field checks. 

Research Methods and Model 

In landslide studies a logistic regression model incorporates the occurrence of landslides as a discrete and 

dichotomous response variable, and the geo-environmental factors that influence it as explanatory 

variables. The logistic regression model for k explanatory variables is formulated as  
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where Pr (Yi = 1) is the probability of the occurrence of a landslide, constrained to lie between 0 and 1, 

the ijx
denote the different categories of the geo-environmental factors and the βj, j = 0,…,k are unknown 

regression coefficients.  

A Bayesian framework contains three key components associated with parameter estimation: the prior 

distribution, the likelihood function and the posterior distribution. A simple Bayesian equivalent of the 

frequentist logistic model was constructed after Clark et al. [2]  
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where iy
 represents the response variable, the j’s are coefficients having independent normal prior 

distributions with a very high variance, ijx
represents the value of the jth variable at ith location and iη

is 

the linear predictor. 

Using the Bayes formula, the posterior distribution of the parameters  under this model is given by: 
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This is an extension of the Bayesian formula
)|( yf θ α )(θg × )|( θyL

,  that relates the 

posterior distribution as proportional to the product of the prior distribution and the likelihood function.  

Prior distribution Pr ( j). In this study noninformative priors are considered, because the aim is to show 

the advantage of a Bayesian method over ordinary frequentist method using normal priors without using 

additional knowledge.    

Likelihood function Pr(yi| i). Preliminary inference is derived for all variables from the FLR model. The 

same variables are used in the BLR model for better comparison of the output maps and the significance 

of a Bayesian statistical data analysis framework. The Bayesian analysis is employed in this study using 

the Gibbs sampler, an iterative algorithm that achieves posterior estimation via Markov Chain Monte 

Carlo (MCMC) integration for estimation of the posterior distributions [1].  



Results 

The mapped landslides cover an area of 0.45 km2, corresponding to 5.6% of the total area (minimum 144 

m2, maximum 0.052 km2, mean 7261.3 m2 and standard deviation 9242.3 m2). The results of the modeling 

showed that the posterior parameter estimates obtained for BLR model are similar to the estimates 

generated with FLR analysis. However, the posterior density functions are useful to reveal the 

significance of the different explanatory variables for their contribution towards the landsliding (Figure 

1).  

 

Figure 1. History of trace plots and density distribution of the corresponding posterior parameter 

estimates (beta’s) for 2 selected variables (A & B). History of trace plots indicates the parameter value 

after 25,000 iterations for convergence of simulation. 

 

Interpretation of the coefficients from the logistic model is not as straightforward as interpretation of the 

coefficients in a linear model, and therefore we turn towards their exponential values.  For example, BLR 

model generates the parameter mean value 0.239 with the end points of a 95 percent confidence interval 

as (0.002, 0.582). Estimation indicates that the changes in the log-odds of landslide for this slope class are 

between 0.002 and 0.582 with 95% confidence and the parameter estimate is contributing positively to the 

landslide occurrence. As shown in the Figure 2, the BLR model was conservative in predicting very high 

susceptibility class (0.75 – 1.0) as the area percentage almost matches the percentage of landslide in the 

study area (5.25 % predicted versus 5.6 % actual). On the other hand FLR model had a higher prediction 

percentage i.e. 9.87%. in this class. We conclude that being performed iteratively and accounting for prior 

information, a Bayesian logistic regression model leads to a refined output of parameter estimates, 

thereby increasing the success rate of predicted probabilities of susceptibility map. 



 

Figure 2. Landslide susceptibility maps. (A) Using frequentist logistic regression. (B) Using Bayesian 

logistic regression methods. Low (0.00-0.25), moderate (0.25-0.50), high (0.50-0.75) and very high (0.75-

1.0).  
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