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1. INTRODUCTION

Given two images of the same scene, taken at different times and (inevitably) under different conditions, we consider the

problem of finding anomalous changes in the scene [1]. There will be pervasive differences between these two images, due to

the different conditions under which the images were taken, but our working assumption is that the character of these differences

will be the same over the whole image. By contrast, the anomalous changes will be small and/or rare, and their character will

be different from the pervasive differences. The recasting of this problem in terms of binary classification enables the use of

more sophisticated machine learning tools than have traditionally been employed for the change detection problem.

In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous

changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that

even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger

training sets, which in turn places more of a computational burden on the SVM.

We take three different approaches to address this problem. The first is a standard SVM which is trained at one threshold

(where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime.

The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of

a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the

threshold in a straightforward manner. The third approach is a weighted support vector machine, where the weights for the

two type of errors (false alarms and missed detection) are automatically adjusted to achieve the desired low false alarm rate.

Our experiments show that in some cases the first two types work well, while in some other cases they do not. This renders

both approaches unreliable for automated anomalous change detection. By contrast, the third approach reliably produces good

results, but at the cost of larger computational requirements caused by the need to estimate very small false alarm rates. To

address these computational requirements, we employ a recently developed in-house solver for SVMs that is significantly faster

than freely available standard solvers.

But these computational issues are secondary to the larger question: do kernelized solutions provide better performance, in

terms of detection rates and false alarm rates, than more traditional methods for change detection that effectively assume Gaus-

sian data distributions? To this end, we will compare ROC curves obtained from the SVM with those from chronochrome [2],

covariance equalization [3], and hyperbolic anomalous change detection [4].
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2. ANOMALOUS CHANGE DETECTION

A seeming difficulty with anomalous change detection, and with anomaly detection generally, is that anomalies tend to defy

precise definition. We say that they are not normal or that they are not not typical, but we have more trouble trying to say what

they are. As is usually the case with detection problems, however, the main technical challenge lies not in characterizing the

targets, but in characterizing the background – in this case, the non-anomalous pervasive differences.

Let x ∈ R
dx be a pixel in the “x” image, and y ∈ R

dy be the pixel at the corresponding location in the “y” image. We write

P (x, y) as a joint probablity distribtuion in dx + dy dimensional space that describes how x and y are correlated over the two

images. Here, P (x, y) corresponds to our model for pervasive differences.1

As a one-class problem, P (x, y) describes the one “ordinary class;” data outside (or on the tails of) this distribution are

candidates for anomalies. One way to find these anomalies is to recast anomaly detection as binary classification [5]. In this

recasting, one identifies an “anomaly class” defined by a generic low-information distribution – the usual choice is a uniform dis-

tribution with support that extends well beyond the range of the data. In this uniform case, contours of the likelihood ratio (i.e.,

the Bayes optimal classifier) correspond to the contours of P (x, y). A nonuniform anomaly class, introduced previously [6],

provides a model that is tailored for anomalous change.

Let Px(x) =
∫

P (x, y) dy and Py(y) =
∫

P (x, y) dx be the marginal distributions of P (x, y). Here Px(x) corresponds to

the distribution of pixels in the x-image, regardless of what is going on in the y-image. And Py(y) is the distribution of pixels

in the y-image. Our model for anomalous change considers the x and y pixels as individually ordinary, but the relationship

between them to be unusual. Specifically we write the product Px(x)Py(y) as our model for anomalous changes. This allows

a likelihood ratio to be defined:

A(x, y) =
Px(x)Py(y)

P (x, y)
. (1)

Here A(x, y) is our measure of anomalousness, and when it is above a given threshold, then we declare the change at a pixel

pair (x, y) to anomalous.

From a machine learning point of view, however, we do not want to work with distributions explicitly. Instead, we want

to work directly with samples that are drawn from this distribution (namely, our data). We can effectively draw data from

Px(x)Py(y) by resampling from our data. A pair (x, y) is obtained by choosing x randomly from the x-image, and indepen-

dently choosing y from the y-image. In fact, this can very efficiently be done by just scrambling the pixels in one of the images.

These pairs define our anomalous change class; the original data defines our pervasive difference class. And we have all we

need to employ our favorite binary classification algorithm.

It is important to note, however, that this binary classification has to operate in the low false alarm rate regime. From the

point of view of likelihood ratio, this is a simple matter of adjusting a threshold. But for binary classification, one does not

obtain a likelihood ratio, and must employ other techniques. In the next section, we describe the use of our favorite binary

classifier, the support vector machine, with unequal weighting on the two classes, for solving the anomalous change detection

problem.

1We remark that this model treats the pixels as i.i.d. samples from a parent distribution, and in particular neglects spatial correlations in the imagery. For

hyperspectral imagery, this is often reasonable because there is so much detailed spectral information at each pixel.



3. A WEIGHTED SUPPORT VECTOR MACHINE APPROACH

In this work we decided to use support vector machines (SVMs), which are one of the best classification methods currently

available, to solve these weighted binary classification problems. Therefore, let us briefly recall SVMS (see e.g. [7, 8] for a

thorough introduction). The core ingredient of SVMs is a so-called kernel k : R
d × R

d → R, that is, a symmetric positive

semi-defiite function. In the following we will solely focus on the so-called Gaussian RBF kernels that, for a given σ > 0, are

defined by kσ := (x, x′) := exp(−σ2‖x − x′‖2
2), where ‖ · ‖2

2 denotes the Euclidean norm on R
d. In it well-known that to

each such kernel there exists a unique reproducing kernel Hilbert spaces (RKHS) Hσ , which consists of functions f : R
d → R.

Now, given a so-called regularization parameter λ > 0, a kernel parameter σ > 0, and two classification weights w− > 0 and

w+ > 0 with w− + w+ = 1, the corresponding SVM solves the optimization problem

fσ,λ,w− = arg min
f∈H

(
λ‖f‖2

Hσ
+

w−
n−

∑
yi=−1

L(−1, f(xi)) +
w+

n+

∑
yi=1

L(1, f(xi))
)

, (2)

where L(y, t) := max{0, 1 − yt} is the so-called hinge loss and n− and n+ denotes the number of negatively and positively

labeled samples, respectively. It is well-known that (2) is a strictly convex ptimization problem that always have a unique

solution fσ,λ,w− ∈ Hσ , see e.g. [8, Chapter 5.1]. Moreover, this solution is of the form

fσ,λ,w− =
n∑

i=1

yiα
∗
i kσ(xi, · ) , (3)

where (α∗i , . . . , α
∗
n) is a solution of the dual optimization problem, see e.g. [8, Chapter 11.1]. Unfortunately, there is, in general,

no way to use suitable a-priori knowledge to determine the free parameters λ, σ and w−, and thus they are often determined

by a hold-out set in the following way. First one fixes sets Λ, Σ, and W of candidate values for λ, σ and w−, respectively

and splits the training set into two subsets D1 and D2. Then for each triple (λ, σ, w−) ∈ Λ × Σ × W , the SVM optimization

problem for the dataset D1 is solved and the false alarm rate and the detection rate of the resulting fσ,λ,w− is estimated using

D2. Finally, the triple (λ, σ, w−) is picked for which the false alarm rate is below the given threshold and the detection rate

is maximized. Analogously to the unweighted classification case, see e.g. [8, Chapter 8.3], one can show that under suitable

conditions on Λ, Σ, and W this approach asymptotically yields optimal decision functions fσ,λ,w− . In addition, this approach

closely resembles many approaches recommended in practice for unweighted binary classification problems. Consequently, we

followed this approach modulo two minor modifications.

Conceptionally, the SVM approach is quite straightforward, but when implemented by standard SVM packages such as

LIBSVM [9] it is computationally almost infeasible on a single desktop. Indeed, the fact that we need to determine three hy-

perparameters λ, σ and w− means that we have to solve the dual problem several thousand times, which is too time-consuming

when done by such packages. To address this issue we developed our own SVM solver [10], which on most datasets is at least 40

times (sic!) faster than LIBSVM. In addition, our SVM package also carefully caches the kernel matrices (yiyjkσ(xi, xj))n
i,j=1,

which also decreases the entire training time significantly. Another computational bottleneck comes from the fact that we are

interested in very small false alarm rates, which can only be estimated by large hold-out sets D2. Now (3) shows that a brute-

force approach for estimating the false alarm and detection rate for a single triple requires (λ, σ, w−) requires D1 · D2 kernel

computations and the same amount of additional multiplications and additions. With sample sizes of a few thousand for D1 and



100-200 thousand for D2, this becomes computationally intractable when done for several thousand triples (λ, σ, w−), even if

the sparsity, see [8, Chapters 8.4 and 8.6] of the representation (3) is taken into account. To address this issue, we combined

the sparseness of (3) with the following strategies: a) caching the kernel matrix and changing σ in the most outer loop of the

hyper-parameter determination, b) updating (3) only for those α∗i that have changed from the previous value of λ, which are

changed in the most inner loop of the hyper-parameter determination, c) implementing the remaining summation on a graphical

processing unit (GPU). By this means, a typical computation of the false alarm rate and the detection rate for a single triple

(λ, σ, w−) currently takes about 5ms if D1 = 1, 000 and D2 = 100, 000, while without these strategies the same computation

exploiting only the sparseness takes about one minute on one of the currently fastest desktop processors (Intel Core i7 Ex-

treme). Similarly, the test phase in which the final decision function is applied to the entire image requires computing (3) very

often (depending on the image size up to several million times). Again, this is computationally too expensive when done on a

CPU, and hence we implemented this step on an GPU, too. The discussion above shows that a rigorous SVM approach for the

anomalous change detection problem requires a significant implementation effort.
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