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1. INTRODUCTION

The accurate classi cation of remote sensing images is an important task for many applications, such as monitor-

ing and management of the environment, precision agriculture, security issues. Hyperspectral (HS) imagery, which

records a detailed spectrum of light arriving at each pixel, opens new perspectives in image analysis and classi -

cation. While pixel-wise classi cation techniques process each pixel independently from the pixels in its neigh-

borhood [1], further improvement of classi cation accuracies can be achieved by considering spatial dependencies

between pixels [2, 3].

Segmentation techniques, partitioning an image into homogeneous regions, are a powerful tool for de ning

spatial dependencies. In previous works, we have performed unsupervised segmentation of HS images in order

to distinguish spatial structures [3, 4]. Segmentation and pixel-wise classi cation were applied independently, then

results were combined using a majority voting rule. Thus, every region from a segmentation map has been considered

as an adaptive homogeneous neighborhood for all the pixels within this region. However, unsupervised image

segmentation is a challenging task, since the measure of region homogeneity must be chosen. An alternative way

to get accurate segmentation results consists in performing a marker-controlled segmentation. Recently we have

proposed to use probability estimates obtained by the pixel-wise Support Vector Machines (SVM) classi cation in

order to choose the most reliable classi ed pixels as markers, i.e., seeds of spatial regions [5]. Furthermore, image

pixels were grouped into a Minimum Spanning Forest (MSF), where each tree was rooted on a classi cation-derived

marker and formed a region in the spectral-spatial classi cation map. The described technique led to a signi cant

improvement of classi cation accuracies when compared to previously proposed methods. The drawback of this

method is that the choice of markers strongly depends on the performance of the selected pixel-wise classi er.

In this work, we aim to mitigate the dependence of the marker selection procedure from the choice of a pixel-

wise classi er. For this purpose, a new marker selection method based on the multiple classi er (MC) system is

proposed. Several classi ers are used independently to classify an image. Furthermore, a marker map is constructed

by selecting the pixels assigned by all the classi ers to the same class. We propose to use spectral-spatial classi ers
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Fig. 1. Flow-chart of the proposed MSSC-MSF classi cation scheme.

at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classi -

cation and one of the unsupervised segmentation techniques. The proposed marker selection method is incorporated

into a new Multiple Spectral-Spatial Classi cation scheme (MSSC-MSF) based on the construction of an MSF

from region markers.

2. PROPOSED CLASSIFICATION SCHEME

The ow-chart of the proposed MSSC-MSF classi cation method is depicted in Figure 1. At the input a B-band

HS image is given, which can be considered as a set of n pixel vectors. In the following, each step of the proposed

procedure is described.

1) Watershed segmentation: Watershed transformation is a powerful morphological approach to image segmen-

tation which combines region growing and edge detection. The watershed is usually applied to the gradient function,

and it divides an image into regions, so that each region is associated with one minimum of the gradient [4]. We

have extended a watershed method to the case of HS images in [4]: First, a one-band Robust Color Morphological

Gradient is computed. By applying watershed transformation, the image is partitioned into a set of regions.

2) Segmentation by expectation maximization: The Expectation Maximization (EM) algorithm for the Gaussian

mixture resolving belongs to the group of partitional clustering techniques [3]. Clustering aims at nding groups

of spectrally similar pixels. We assume that pixels belonging to the same cluster are drawn from a multivariate

Gaussian probability distribution. The parameters of the distributions are estimated by the EM algorithm. When

the algorithm converges, the partitioning of the set of image pixels into clusters is obtained. Finally, a connected

components labeling algorithm is applied to the output image partitioning obtained by clustering.

3) RHSEG segmentation: The Hierarchical image SEGmentation (HSEG) algorithm is a segmentation tech-

nique based on iterative hierarchical step-wise optimization region growing method. Furthermore, it provides a

possibility of merging non-adjacent regions by spectral clustering [6]. NASA’s RHSEG software provides an ef -

cient implementation of the HSEG algorithm. We have investigated the use of the RHSEG technique for segmen-

tation of HS images, choosing the standard Spectral Angle Mapper (SAM) between the region mean vectors as the

dissimilarity criterion [6], and the parameter spclust wght = 0.1 (merging of spatially adjacent regions is favored).



Table 1. Classi cation Accuracies in Percentage for the University of Pavia Image: Overall Accuracy (OA), Average
Accuracy (AA), Kappa Coef cient (κ) and Class-Speci c Accuracies.

3-NN ML SVM ECHO WH+MV EM+MV
RHSEG SVMMSF MC- MSSC-
+MV +MV MSF MSF

OA 68.38 79.06 81.01 87.58 85.42 94.00 93.85 91.08 87.98 97.90
AA 77.21 84.85 88.25 92.16 91.31 93.13 97.07 94.76 92.05 98.59
κ 59.85 72.90 75.86 83.90 81.30 91.93 91.89 88.30 84.32 97.18
Asphalt 64.96 76.43 84.93 87.98 93.64 90.10 94.77 93.16 87.01 98.00
Meadows 63.18 75.99 70.79 81.64 75.09 95.99 89.32 85.65 83.24 96.67
Gravel 62.31 64.57 67.16 76.91 66.12 82.26 96.14 89.15 75.37 97.80
Trees 95.95 97.08 97.77 99.31 98.56 85.54 98.08 91.24 98.97 98.83
Metal sheets 99.73 99.91 99.46 99.91 99.91 100 99.82 99.91 99.91 99.91
Bare soil 57.42 70.03 92.83 93.96 97.35 96.72 99.76 99.91 93.24 100
Bitumen 82.67 90.62 90.42 92.97 96.23 91.85 100 98.57 95.11 99.90
Bricks 77.08 90.10 92.78 97.35 97.92 98.34 99.29 99.05 97.00 99.76
Shadows 91.57 98.87 98.11 99.37 96.98 97.36 96.48 96.23 98.62 96.48

4) Pixel-wise classi cation: Independently of the previous steps, an SVM pixel-wise classi cation of the HS

image is performed [1]. This step results in a classi cation map (each pixel has a unique class label).

5) Majority voting within segmentation regions: Each of the obtained segmentation maps is combined with the

pixel-wise classi cation map using the majority voting principle: For every region in the segmentation map, all the

pixels are assigned to the most frequent class within this region.

6) Marker selection: This step consists in computing a map of markers, using spectral-spatial classi cation maps

from the previous step and exclusionary rule: For every pixel, if all the classi ers agree, the pixel is kept as a marker,

with the corresponding class label. The resulting map of markers contains the most reliable classi ed pixels.

7) Construction of an MSF: In the nal step, image pixels are grouped into an MSF rooted on the selected

markers, as described in the full paper. A classi cation map is obtained by assigning the class of each marker to all

the pixels grown from this marker.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results are presented for a ROSIS (Re ective Optics System Imaging Spectrometer) image of the

University of Pavia, Italy. The image is 610 × 340 pixels, with a spatial resolution of 1.3 m per pixel and 103

spectral channels. The reference data contain nine classes of interest [3].

The segmentation of the considered image is performed, using the three different techniques discussed in the

previous section. The multi-class pairwise SVM classi cation, with the Gaussian Radial Basis Function kernel, is

performed. The results of the pixel-wise classi cation are combined with the segmentation results, using the majority

voting approach. Finally, the marker selection and the construction of an MSF are performed.

Table 1 summarizes the accuracies of the pixel-wise SVM, segmentation + majority voting (WH+MV, EM+MV,

RHSEG+MV for three segmentation techniques, respectively) and the proposed classi cation method. In order

to compare performances of the proposed technique with the previously proposed methods, we have also in-

cluded results of the well-known ECHO spatial classi er [2], as well as the results obtained using the construction

of an MSF from the probabilistic SVM-derived markers followed by majority voting within connected regions



(SVMMSF+MV) [5]. Furthermore, we assess the importance of spectral-spatial approaches for marker selection.

For this purpose, we have replaced the WH+MV, EM+MV, RHSEG+MV classi cation maps by three maps obtained

using standard pixel-wise classi cation techniques. Maximum Likelihood (ML), SVM and 3-Nearest Neighborhood

(3-NN, using the SAM distance) methods have been used for this purpose. The accuracies of the modi ed MC-MSF

classi cation, as well as pixel-wise classi cation results are given in Table 1.

As can be seen from the table, both the global and most of the class-speci c accuracies are substantially im-

proved by the proposed MSSC-MSF method, when compared to previous spectral-spatial classi cation techniques.

The MSSC-MSF classi cation accuracies are much higher than the MC-MSF accuracies. These results prove the

importance of the use of MC systems and spatial information throughout the classi cation procedure.

4. CONCLUSIONS

In this paper, a new MC method for spectral-spatial classi cation of HS images is proposed. First, a marker map is

constructed by selecting the pixels assigned by several spectral-spatial classi ers to the same class. This ensures a

robust and reliable selection. Then, an MSF rooted on the selected markers is built. Experimental results did show

that the proposed method improves classi cation accuracies, when compared to previously proposed classi cation

schemes, and provides classi cation maps with homogeneous regions. The presented classi cation accuracies are

higher than all previous results we have found in the literature for the same data. Similar results are obtained for

other datasets acquired by the ROSIS and the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensors.

In conclusion, the proposed methodology succeeded in taking advantage of multiple classi ers and the spatial

and the spectral information simultaneously for accurate HS image classi cation.
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