
SPARSITY-BASED CLASSIFICATION OF HYPERSPECTRAL IMAGERY

Yi Chen1, Nasser M. Nasrabadi2 and Trac D. Tran1

1Department of Electrical and Computer Engineering, The Johns Hopkins University

3400 N. Charles Street, Baltimore, MD 21218
2US Army Research Laboratory

2800 Powder Mill Road, Adelphi, MD 20783

ABSTRACT

In this paper, a new sparsity-based classi cation algorithm for hyperspectral imagery is proposed. This algorithm is based on

the concept that a pixel in hyperspectral imagery lies in a low-dimensional subspace and thus can be represented by a sparse

linear combination of the training samples. The sparse representation can be recovered by solving a constrained optimization

problem. Once the sparse vector is obtained, the class of the test sample can be directly determined by the behavior of

the vector on reconstruction. In addition to the constraints on sparsity and reconstruction accuracy, we also exploit the fact

that hyperspectral images are usually smooth within a neighborhood. In our proposed algorithm, a smoothness constraint

is imposed by forcing the Laplacian of the reconstructed image to be minimum in the optimization process. The proposed

sparsity-based algorithm is applied to several hyperspectral imagery to classify the pixels into target and background classes.

Simulation results show that our algorithm outperforms the classical hyperspectral target detection algorithms.

1. INTRODUCTION

In this paper, we consider a two-class classi cation problem for hyperspectral imagery (HSI) where pixels are labeled as

target or background based on their spectral characteristics. A number of algorithms have been proposed for this purpose

based on statistical hypothesis testing techniques [1]. Among these approaches, spectral matched lter (SMF) [2], matched

subspace detectors (MSD) [3], and adaptive subspace detectors (ASD) [4] have been widely used to detect targets of interests.

We propose a classi cation algorithm based on sparse representation. We use the same sparsity model in [5] where a

test sample is approximately represented by very few training samples from both target and background dictionaries, and the

sparse representation can be recovered and used directly for classi cation. In addition to the constraints on sparsity and recon-

struction accuracy as in [5], we show that it is necessary to exploit the fact that neighboring HSI pixels usually have a similar

spectral characteristics as well. To achieve this, we impose a smoothing constraint on the reconstructed image by forcing

the Laplacian of the reconstructed image to be zero. The proposed approach has several advantages over the aforementioned

classical techniques. First, there is no explicit assumption on the statistical distribution characteristics. Furthermore, the target

dictionary can be easily augmented to account for various illumination and atmospheric conditions, making the dictionary

invariant to the environmental variations [6]. Moreover, the sparsity model in our approach has the exibility of imposing

additional restrictions corresponding to the characteristics of HSI such as smoothness across neighboring hyperspectral pixels.

The paper is structured as follows. Our sparsity-driven classi cation algorithm is presented in Section 2. The effectiveness

of the proposed method is demonstrated by simulation results presented in Section 3. Conclusions are drawn in Section 4.



2. SPARSITY-BASED CLASSIFICATION

In this section, we introduce a sparsity-based classi cation algorithm by sparsely representing the test sample using training

samples. Firstly, we describe the details of the sparse subspace model used in the proposed algorithm.

2.1. Sparsity Model
Let xxx be a B-dimensional hyperspectral pixel observation, where B is the number of spectral bands. If xxx is a back-

ground pixel, its spectrum approximately lies in a low-dimensional subspace spanned by the Nb background training samples{
aaab

i

}
i=1,2,...,Nb

. Then, xxx can be approximately represented by a linear combination of the training samples as follows.
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where AAAb is the B × Nb background dictionary and ααα is an unknown vector whose entries are the abundances of the corre-

sponding atoms in AAAb. In our model, ααα turns out to be a sparse vector (i.e., a vector with only few non-zero entries).

Similarly, a target pixel xxx can also be sparsely represented by the Nt target training samples {aaat
i}i=1,2,...,Nt

as
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where AAAt is the target dictionary and βββ is a sparse vector whose entries contain the abundances of the target atoms in AAAt.

An unknown test sample xxx lies in the union of the background and target subspaces, and can be written as

xxx = AAAbααα + AAAtβββ =
[
AAAb AAAt

] [
ααα

βββ

]
= AAAγγγ, (3)

where AAA consists of both background and target training samples and γγγ is a sparse (Nb + Nt)-dimensional vector formed by

concatenating the two sparse vectors ααα and βββ. Next, we show how to obtain γγγ and label the class of a test sample from γγγ.

2.2. Reconstruction and Classi cation
Given the test sample xxx and dictionary AAA, the vector γγγ can be obtained by solving the following optimization problem:

γ̂γγ = arg min ‖γγγ‖
0

subject to AAAγγγ = xxx, (4)

where ‖·‖
0

denotes �0-norm which is de ned as the number of non-zero entries in the vector. If the solution is suf ciently

sparse, the problem in (4) can be relaxed to a linear programming problem which can be solved ef ciently [7]. Alternatively,

it can be solved by greedy pursuit algorithms such as the one in [8].

Once the sparse vector γγγ is obtained, the class of xxx can be determined by comparing the residuals rb(xxx) = ‖xxx−AAAbα̂αα‖2
and rt(xxx) =

∥∥∥xxx−AAAtβ̂ββ
∥∥∥

2

, where α̂αα and β̂ββ represent the recovered sparse coef cients corresponding to the background and

target dictionaries, respectively. In our approach, the algorithm output is calculated by

D(xxx) = rb(xxx)/rt(xxx). (5)

If D(xxx) > δ with δ being a prescribed threshold, thenxxx is determined as a target pixel; otherwise,xxx is labeled as background.

2.3. Classi cation with Smoothing Constraint
Hyperspectral imagery is usually smooth in the sense that neighboring pixels usually consist of similar materials and thus their

spectral characteristics are highly correlated. To exploit the smoothness property of HSI, we incorporate a smoothing term in

the sparsity-based algorithm. Let III represent the hyperspectral image and ÎII be its reconstruction. Let xxx1 be a pixel of interest,

and xxxi, i = 2, . . . , 5 be its four nearest neighbors in the spatial domain. While searching for the sparsest representation of the

test sample xxx1, we simultaneously minimize the reconstructed image Laplacian �
2ÎII at the point xxx1, which is calculated as

4x̂xx1 − x̂xx2 − x̂xx3 − x̂xx4 − x̂xx5. In this way, the reconstructed test sample is forced to have a similar spectral characteristics as its

four nearest neighbors; hence, smoothness is enforced across the spectral pixels in the reconstructed image.

Let γγγi be the sparse coef cient associated with xxxi. Then, the smoothness-constrained problem can be formulated as

min

5∑
i=1

‖γγγi‖0 subject to: AAA(4γγγ1 − γγγ2 − γγγ3 − γγγ4 − γγγ5) = 000, xxxi = Aγγγi for i = 1, . . . , 5. (6)



In (6), the rst set of linear constraints forces the reconstructed image Laplacian to become zero such that the reconstructed

neighboring pixels have similar spectral characteristics, and the second set minimizes reconstruction errors. The optimization

problem in (6) can be rewritten as

min ‖γγγ‖
0

subject to: ÃAAγγγ = x̃xx, (7)

where ÃAA =
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The problem in (7) is the standard form of a linearly-constrained sparsity-minimization problem and can be solved using the

various available solvers as previously mentioned.

Classi cation can be performed based on the behavior of the sparse coef cients as it was done in Section 2.2. The

algorithm output is computed as in (5) by the ratio of residuals. If the output D(xxx) is greater than a prescribed threshold δ,

then the test sample is labeled as a target; otherwise it is labeled as background.

3. SIMULATION RESULTS AND ANALYSIS

The proposed algorithm, as well as the classical algorithms SMF, MSD, and ASD, are applied to two HSI. The results are

compared both visually and quantitatively by the receiver operating characteristics (ROC) curves, which describes the prob-

ability of detection as a function of the probability of false alarms. The two test images, the desert radiance II data collection

(DR-II) and forest radiance I data collection (FR-I), are from a hyperspectral digital imagery collection experiment (HYDICE)

sensor. We use 150 of the 210 bands generated by the HYDICE sensor, removing the absorption and low-SNR bands. The

DR-II image contains 6 military targets and the FR-I image contains 14 targets as seen in Fig. 1(a) and Fig. 2(a), respectively.

We show a comparison between the performances of the sparsity-based technique and the classical target detection algo-

rithms for the DR-II and FR-I images. For both images, the target dictionary AAAt contains Nt = 18 atoms from the leftmost

target, and the background signatures are generated locally for each test sample to better adapt to the local statistics. The

output of the proposed smoothness-constrained approach for DR-II is shown in Fig. 1(b). For visual comparison, the outputs

of other algorithms are also displayed in Figs. 1(c)-(f). We see that the sparsity-based algorithm with smoothing constraint

leads to the best visual quality. Similar results can be observed in Fig. 2 for the FR-I image.
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Fig. 1. (a) The mean DR-II image. Outputs for DR-II with (b) sparsity-based algorithm with smoothing constraint using (7),
(c) sparsity-based algorithm without smoothing constraint using (4), (d) MSD, (e) SMF, and (f) ASD.

The ROC curves for DR-II and FR-I images are shown in Fig. 3. Under the same settings, we compare the performance of

the proposed sparsity-based algorithm to the previously-developeddetectors. Obviously, the proposed classi cation algorithm

with the smoothness constraint signi cantly outperforms the other detectors.

4. CONCLUSIONS

In this paper, we propose a classi cation algorithm for hyperspectral imagery based on sparse representation of the test

samples. In the proposed algorithm, the sparse representation is recovered by solving a constrained optimization problem
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Fig. 2. (a) The mean FR-I image. Outputs for FR-I with (b) sparsity-based algorithm with smoothing constraint using (7),
(c) sparsity-based algorithm without smoothing constraint using (4), (d) MSD, (e) SMF, and (f) ASD.
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Fig. 3. ROC curves for (a) DR-II and (b) FR-I.

that addresses the sparsity, reconstruction accuracy, and smoothness of the reconstructed image simultaneously, and then the

classi cation decision is obtained directly from the recovered sparse vectors. The new algorithm outperforms the previously-

developed detectors in terms of both qualitative and quantitative measures, as demonstrated by experimental results in several

real hyperspectral imageries.
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