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1. INTRODUCTION

Building change detection is a key task in several applications of remote sensing image analysis, such as monitoring the evolu-

tion of built-in areas [1] or extracting damaged buildings after a natural disaster [2]. In this paper, we focus on multitemporal

aerial or satellite image pairs from sparsely populated areas. Most previous solutions handle the building identification and

change detection tasks in a sequential way. In the Post Detection Comparison (PDC) methods [2], independent building detec-

tion processes are applied in the earlier and latter images which is followed by object level comparison. Methods using the Post

Change Classification (PCC) approach rely on a change map based on low-level similarity features [3] (like difference image

or texture comparison), and then search for new/demolished buildings only in the changed regions. As a drawback, in these

two-step techniques both the change detection and object extraction parts can be a bottleneck, e.g. in PDC, a missing object

resulted by the failure of the object detector cannot be recovered later in the process.

Another important issue is related to building modeling. Direct techniques consist of quick image operations, such us junc-

tion detection in the edge map [4] or floodfill based segmentation [5]. However in large and heterogenous databases, the building

and background classes may strongly overlap in the feature domains, making the separation less accurate. Robust methods can

be obtained by applying inverse approaches [6], where a fitness value is assigned to each possible object configuration and an

optimization process based on the hypothesis generation-acceptance schema attempts to find the configuration with the highest

confidence. However, as the processing time is proportional to the size of the images [6], this approach is inefficient in sparse

areas, where the most part of the computational power can be wasted to check irrelevant object hypothesizes.

The method introduced here attempts to overcome the aforementioned problems. Building extraction is achieved by two

interacting marked point processes [6] corresponding to the two time layers, where building candidates are characterized in

the inverse modeling approach, meanwhile low level change information affects the detection directly through inter-layer con-

straints. The building population is evolved by an iterative birth-death dynamics, while the computational cost is significantly

decreased by applying a non-uniform object birth process, which proposed relevant object with higher frequency based on joint

intensity statistics of the input images.

2. NOTATIONS AND PROBLEM DEFINITION

Let G1 and G2 be the two co-registered aerial or satellite images which we wish to investigate. G1 and G2 have an identical

pixel lattice S. The color values are denoted by g1(s) and g2(s) for a pixel s ∈ S of G1 and G2, respectively.

We consider each building to be constructed from one or many rectangular building segments, which we aim to extract by

the following model. Let u be a rectangular building segment candidate. To incorporate the change information, we assign to
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u a binary indicator flag ξ(u) ∈ {ch, ua}, where ch means changed object. Let be Ru ⊂ S the set of pixels corresponding to

u. Rectangle Ru is described by its center pixel c ∈ S, and three scalar parameters: eL, el side lengths and θ ∈ [−90◦,+90◦]
orientation. We aim to extract a population of building segments in each time layer: ω1 = {u11, u12, . . . , u1m} in G1 and

ω2 = {u21, u22, . . . , u2n} in G2, where the numbers of objects m and n are also unknown. We refer to the whole two-layer

configuration as ω̂ = {ω1;ω2}
In the proposed model, low level (see Sec. 3) and object level (Sec. 4) features are utilized parallely. Low level descriptors

are mainly exploited by the optimization process to estimate roughly where the buildings and changed built-in regions can

be located. Based on them, we will generate relevant objects with higher probability, which can significantly speed up the

exploration phase. On the other hand, object level features are applied to verify the proposed building candidates and keep only

the appropriate ones (Sec. 5).

3. BUILT-IN AREA AND CHANGE ESTIMATION

The rural background regions at the countryside and rarely populated areas can be usually well described by a few dominant

color values [3], e.g. the mean colors of different types of forests, plough lands, grass etc. These colors appear with high weight

in the global image histograms, thus the remaining regions, which are expected to contain the built-in territories as well, can be

obtained by outlier filtering. Although for one image layer, experimental evidences show that overlap between the background

and built-in-area color domains is usually to large for efficient separation, we can improve the performance by considering

color co-occurrences in the two images. For simpler demonstration, we illustrate this step with grayscale inputs. We create first

a 2-D histogram h which assigns a frequency value to each intensity pair, e.g. h[gI1 , g
I
2 ] is the number of pixels whose gray

value is gI1 in the first image, G1, and gI2 in the second one, G2. In this way we measure, which intensity pairs occur often

together in the two images, therefore they characterize unchanged background regions with a higher confidence. As for colored

inputs, a similar schema can be adopted with 6-D histograms. For the density estimation of this histogram we have chosen a

Mixture of K 2-D (resp. 6-D) Gaussians approach. Mixture components with high weight correspond to the frequent color

pairs (e.g. typical color of forest in image G1 and G2), K is a parameter of the process. Denoting by g(s) = [g1(s); g2(s)]
T the

concatenated color vector of s, we calculate the Pbg(s) =
∑K

i=1 κi · η
(
g(s), μi,Σi

)
pixel-by-pixel background-probabilities.

Thereafter, we derive a normalized building ‘birth map’, which assigns higher birth value for pixels with lower background

likelihoods:

B(s) =
maxr∈S Pbg(r)− Pbg(s)

maxr∈S Pbg(r)−minr∈S Pbg(r)

.

We continue with change-area extraction. We derive the next feature, c(s) as the cross correlation between the rectangular

l × l neighborhoods of s in G1 and in G2. Side length l is chosen so that the window can cover an average building narrowly.

As pointed out in [3], c(s) is a reliable similarity measure in the high-contrasted built-in regions. We derive a similarity map

as Ψ(s) = sigm
(
c(s)

)
, where sigm(.) is a sigmoid function which projects the correlation values to [0, 1] in a monotonous,

non-linear manner.

4. SINGLE VIEW BUILDING MODEL

The building model assigns to each proposed object candidate an energy term ϕ(i)(u), which evaluates the hypothesis that u

is a building in the ith image (hereafter we ignore the i superscript). ϕ(u) is interpreted as the negative building fitness value

and rectangles with ϕ(u) < 0 are the potentially relevant objects [6]. The energy function can integrate different feature-

information such as roof color, roof edge and shadow [7]. On one hand, red roofs can be detected in color images using the

hue components of the corresponding pixel values [5]. Thereafter with notation R̃u for the dilated mask of u’s rectangle, the



color term favourizes objects which contain in majority roof colored pixels inside Ru and background pixels in R̃u\Ru. For

non-red roofs we can rely on the gradient and shadow maps exploiting that under the roof edges strong intensity changes should

be observed in the images, while in sunny weather dark shadow blobs are present next to the buildings in the shadow direction

[4].

5. COUPLED POINT PROCESSES FOR MULTITEMPORAL OBJECT DETECTION

Let be H the space of u objects. Using a Borel set H ∈ H, the configuration space is defined as Ω = Ω1 × Ω2, where

Ωi =
∞⋃

n=0

Ωn
i , Ωn

i =
{{u1, . . . , un} ∈ Hn

}
, i ∈ {1, 2}

As before, we denote by ωi ∈ Ωi an arbitrary object-configuration in the ith image, i ∈ {1, 2} We also define a ∼
neighborhood relation in H: u ∼ v if their rectangles Ru and Rv intersect.

We introduce a non-stationary data-dependent energy function on the configuration space as:

ΦD
({ω1;ω2}

)
=

2∑
i=1

∑
u∈ωi

Ai
D(u) + I(u, ωi) + C(u, ωi⊕1)

Here AD(u) is the data term while I(u, ωi) and C(u, ωi⊕1) are the intra-layer, resp. inter-layer, prior interaction terms, ⊕
denotes mod 2 addition. The optimal configuration estimate can be obtained as argminω1∈Ω1,ω2∈Ω2

[
ΦD(ω1, ω2)

]
.

Unary potentials characterize a given building segment candidate u = {c, eL, el, θ, ξ} as a function of the local image data

in the images, but independently of other object of the population:

Ai
D(u) = ϕi(u) +

γξ
#Ru

∑
s∈Ru

I[ξ(u)=ua] + (−1)I[ξ(u)=ua]Ψ(s)

where I[E] ∈ {0, 1} is the indicator function of event E, and Ψ(.) is the low level similarity map between the two time layers

(Sec. 3). The last term penalizes unchanged objects in the regions of textural differences, and new/demolished buildings in

changeless areas.

Interaction potentials enforce prior geometrical constraints. Denote by Ξ(u, v) the intersection-coefficient between the u

and v object rectangles calculated as #(Ru ∩ Rv)/#(Ru ∪ Rv). Within a time layer, we penalize overlapping objects, thus

for u ∈ ωi, the intra-layer potential is got by I(u, ωi)) = γI maxv∈ωi Ξ(u, v). On the other hand, for an unchanged object u in

layer i, we expect an unchanged couple object in layer i⊕ 1, with high overlapping:

C(u, ωi⊕1) = γCI[ξ(u)=ua]

(
1− max

v∈ωi⊕1

I[ξ(v)=ua]Ξ(u, v)

)

where γI and γC are weighting constants. Observe that to calculate the I(u, .) and C(u, .) we should check only the ∼
neighborhood of u instead of the whole population. We estimate the optimal object configuration by the Multiple Birth and

Death Algorithm [6].

6. EXPERIMENTS

We evaluated the proposed Coupled Marked Point Process (CMPP) method on real aerial datasets SZADA [3] and BUDAPEST

[7]. Qualitative results are shown in Fig. 1. The comparative validation focused on showing the advantages of the two

key contributions of CMPP: the interacting multitemporal point processes and the non-uniform birth procedure based on Global



Fig. 1. Detection results. Red denotes changed, blue unchanged building.

Intensity Statistics (GIS). We set the CMPP method first against the sequential PDC approach [2] detailed earlier. As quantitative

metrics, we measured the number of missing and falsely detected objects (MO and FO), missing and false change alarms (MC,

FC), and the pixel-level accuracy of the detection (DA) described by the F-measure [7]. Results showed the superiority of

CMPP versus PDC. The later method caused false and missing alarms mostly in the first image which had a lower color quality.

Moreover since the CMPP uses separate marked objects for the different time instances of the buildings, the model can handle

2-D registration errors more robustly than [7] where the old and new building footprints were described by the same rectangle.

Using the GIS birth map does not modify the final results, but affects the speed of optimization significantly. We could observe

that to reach the 70% DA rate, we need to generate 260, 000 objects with the uniform map, and only 36, 000 building candidates

with the GIS map.

7. CONCLUSION

This paper has addressed the detection of buildings and building changes in remotely sensed image pairs using an energy

minimization approach. We have shown that the proposed coupled point process schema outperforms the conventional layer-

by-layer techniques, while the optimization can be speeded up by a non-uniform, GIS based birth map.

8. REFERENCES

[1] N. Champion, “2D building change detection from high resolution aerial images and correlation digital surface models,” in IAPRSSIS,

2007.

[2] S. Tanathong, K.T. Rudahl, and S.E. Goldin, “Object oriented change detection of buildings after the Indian ocean tsunami disaster,” in

IEEE Intl. Conf. ECTI, 2008, pp. 65–68.
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