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1. INTRODUCTION

A wide range of techniques for hyperspectral image processing have been proposed in recent years [1, 2]. One of such tech-
niques is spectral unmixing, a very important task in remotely sensed hyperspectral data exploitation [3]. When the spatial
resolution of the sensor is not fine enough to separate different spectral constituents, these can jointly occupy a single pixel
and the resulting spectral measurement will be a mixed pixel, i.e., a composite of the individual pure spectra [4]. In order to
define the mixture problem in mathematical terms, let us assume that a remotely sensed hyperspectral scene with n bands is
denoted by X, in which the pixel at the discrete, spatial coordinates (i, j) of the scene is represented by a feature vector given
by X(i, j) = [x1(i, j), x2(i, j), · · · , xn(i, j)] ∈ �n, and � denotes the set of real numbers corresponding to the pixel’s spectral
response xk(i, j) at sensor channels k = 1, . . . , n. Under a linear mixture model assumption [3], each pixel vector in the
original scene can be modeled using the following expression:

X(i, j) =

p∑

k=1

Φk(i, j) · Ek + n(i, j), (1)

where Ek denotes the spectral response of the k-th endmember, Φz(i, j) is a scalar value designating the fractional abundance
of the k-th at pixel X(i, j), p is the total number of endmembers, and n(i, j) is a noise vector. The solution of the linear spectral
mixture problem described in (1) relies on the correct determination of a set of p endmembers denoted by {Ek}

p
k=1.

Over the last decade, several algorithms have been developed for extraction of spectral endmembers directly from the input
hyperspectral data set [5]. Winter’s N-FINDR algorithm [6] is one of the most widely used and successfully applied methods for
that purpose. This approach finds the set of pixels with the largest possible volume by “inflating” a simplex within the data. After
reducing the dimensionality of the data from n to p− 1 (this is a feasible step, since typically p << n), a random set of p pixel
vectors is initially selected from the input scene. In order to refine the initial estimate of endmembers, every pixel in the image
must be evaluated in terms of pixel purity likelihood or nearly pure statehood. To achieve this, the volume is calculated for every
pixel in the place of each endmember. A trial volume is calculated for every pixel in each endmember position by replacing
that endmember and finding the volume. If the replacement results in a volume increase, the pixel replaces the endmember.
This procedure is repeated until there are no more replacements of endmembers. While the endmember determination step of
N-FINDR in the commercial version distributed by Pacific Spectral Technology1 has been optimized for high speed processing,
the computational performance of the algorithm depends on the accuracy of the initial random selection of endmembers and,
most importantly, on the dimensions of the hyperspectral scene and the number of endmembers to be found, p.

Although commodity clusters have been used for speeding up computational performance of hyperspectral imaging ap-
plications in the past [7], these systems are expensive and difficult to adapt to onboard data processing scenarios, in which
low-weight and low-power integrated components are highly desirable to reduce mission payload. An exciting new develop-
ment is the emergence of commodity graphics processing units (GPUs), which can now satisfy extremely high computational
requirements at low cost [8]. In this paper, we propose a new GPU-based implementation of the N-FINDR algorithm. The
proposed implementation is quantitatively assessed in terms of both endmember extraction accuracy and parallel efficiency,
using two different generations of commercial GPUs (8600GT and 8800GTX) from NVidiaTM, a famous GPU vendor2.

1http://www.pacificspectral.com
2http://www.nvidia.com



Fig. 1. Diagram illustrating the proposed parallel implementation of N-FINDR algorithm.

2. PARALLEL IMPLEMENTATION OF THE N-FINDR ALGORITHM

1. Feature reduction. Apply a dimensionality reduction transformation such as the minimum noise fraction (MNF) [9] or
the principal component analysis (PCA) [10] to reduce the dimensionality of the data from n to p−1, where p is an input
parameter to the algorithm (number of endmembers to be extracted). This step is not implemented in parallel.

2. Initialization. Let {E(0)
1 , E(0)

2 , · · · , E(0)
p } be a set of endmembers randomly extracted from the input data. The volume

defined by this set of endmembers, V (E(0)
1 , E(0)

2 , · · · , E(0)
p ) is then calculated. Due to the low computational complexity

of this step, it is not implemented in parallel.

3. Data partitioning. Assign a different pixel vector to each processor of the parallel system in a pre-defined row-column
order, i.e., from the first pixel in the first image row, X(1, 1), to the last pixel in the first image row, X(1, C); then, from
the first pixel in the second image row, X(2, 1), to the last pixel in the second image row, X(2, C); and so on, until the
last pixel in the last image row, X(R, C), is processed. Here, R denotes the total number of rows and C denotes the total
number of columns.

4. Replacement. At iteration k ≥ 0, recalculate the volume by first testing a block of R pixel vectors (in parallel) in
all p endmember positions. This situation is illustrated graphically in Fig. 1. Let us assume that one of such pixels,
say, the one with spatial coordinates (i, j), is allocated to processor t, with t ∈ {1, · · · , T}, being T the total number
of processors in the parallel system. If we denote such pixel as Xt(i, j), then p volumes can be calculated at proces-
sor t by testing Xt(i, j) in all p endmember positions, i.e., processor t first calculates V (Xt(i, j), E(k)

2 , · · · , E(k)
p ), then

V (E(k)
1 , Xt(i, j), · · · , E(k)

p ), and so on, until V (E(k)
1 , E(k)

2 , · · · , Xt(i, j)). If none of the p recalculated volumes at proces-

sor t is greater than V (E(k)
1 , E(k)

2 , · · · , E(k)
p ), then no endmember is replaced. Otherwise, the combination with maximum

volume is retained along with the coordinates of the pixel and the endmember that was replaced at each processor (see
Fig. 1). If we denote the endmember absent in the combination resulting in the maximum volume by E(k+1)

j , then a

new set of endmembers at processor t is produced at processor t by letting E(k+1)
j = Xt(i, j) and E(k+1)

i = E(k)
i for

i �= j. After R pixels have been processed in parallel, the maximum volume resulting from all iterations is selected and
replaced, and the procedure continues until all the columns in the original hyperspectral image have been exhausted. The
replacement step is repeated in iterative fashion, using as many iterations as needed until there are no more replacements.

3. EXPERIMENTAL RESULTS

The parallel implementation of N-FINDR has been validated with regards to a serial version of the original N-FINDR, using a
well-known hyperspectral scenes collected by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite
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Fig. 2. (a) Comparison of volume estimates, and (b) comparison of average SAD with regards to five reference USGS mineral
signatures obtained for the original and parallel N-FINDR implementations.

mining district in Nevada3. This scene has been widely used to validate the performance of endmember extraction algorithms.
The portion used in experiments corresponds to a 250× 191-pixel subset of the sector labeled as f970619t01p02 r02 sc03.a.rfl
in the online data. Prior to the analysis, bands 1–2, 105-115, 150–170, and 223–224 were removed due to water absorption and
low signal-to-noise ratio (SNR) in those bands, leaving a total of 188 spectral bands and an image size of 17.4 MB. A library of
reference spectral signatures collected by U.S. Geological Survey (USGS) is available for the Cuprite scene4. A few selected
spectra from the USGS library, corresponding to minerals: alunite, buddingtonite, calcite, kaolinite and muscovite are used in
this work to substantiate endmember signature purity. It is worth noting that the estimation of the number of endmembers, p, to
be extracted by each implementation has been conducted using the virtual dimensionality (VD) concept [11], which resulted in
an estimate of p = 16 for the considered AVIRIS scene.

3.1. Experiment 1: Analysis of volume estimations

Fig. 2(a) analyzes the volume of the simplex provided for the considered implementations in each of 50 different runs. Each bar
in Fig. 2(a) reports the percentage of volume estimated by each method out of the total cumulative volume estimated by both
methods. Therefore, the optimal situation in this experiment would be achieved when the 50 bars (each of which corresponds to
a different experiment) are made up of 50% volume for the original N-FINDR and 50% volume for the parallel implementation,
meaning that the two implementations reach exactly the same volume in the final endmember solution. As shown by Fig. 2(a),
the two compared methods achieve comparatively very similar volume estimations. Out of 50 experiments, the parallel version
produced higher volume than the serial version in 25 of them.

3.2. Experiment 2: Analysis of extracted endmembers

Our second experiment analyzes the spectral purity of the endmembers extracted by the two considered implementations.
This is assessed by reporting the average spectral angle distance (SAD) scores obtained after comparing the USGS library
signatures of the main five minerals present in the Cuprite scene (alunite, buddingtonite, calcite, kaolinite and muscovite)
with the corresponding endmembers extracted by the different N-FINDR implementations, where each library signature was
matched to one of the endmembers extracted by a certain algorithm in terms of the smaller SAD value observed across the
full endmember set. Fig. 2(b) reports the average SAD values obtained by each method in each of the different 50 runs. As
shown by Fig. 2(b), both the serial and parallel implementations achieve comparatively similar average SAD values, indicating
that their capacity to extract endmembers which are similar (in spectral angle sense) with regards to five highly representative
USGS mineral signatures is comparable, even though the original N-FINDR implementation is slightly better (lower average
SAD scores). Out of 50 experiments, the parallel version produced lower average SAD score than the serial one in 27 of them.

3.3. Experiment 3: Analysis of parallel performance in different GPU architectures

Two different systems were used in our experiments. The first one is based on an Intel Quad-Core CPU running at 2.4 GHz
and with 2 GB of RAM. This computer is equipped with an NVidiaTM GeForce 8600GT with 4 multiprocessors and 255 MB
of global memory. The second system used in experiments is based on an Intel Core 2 Duo CPU running at 2.33 GHz and

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4http://speclab.cr.usgs.gov
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Fig. 3. (a) Processing times in the NVidiaTM 8600GT GPU. (b) Processing times in the NVidiaTM 8800GTX GPU.

with 2 GB of RAM. The computer is equipped with an NVidiaTM GeForce 8800GTX with 16 multiprocessors, each composed
of 8 SIMD processors operating at 1350 Mhz. Each multiprocessor has 8192 registers, a 16 KB parallel data cache of fast
shared memory, and access to 768 MB of global memory. Fig. 3 shows the execution times measured for the CPU and GPU-
based implementations, respectively, for each of the 50 experiments conducted in the two considered systems, with Fig. 3(a)
displaying the timing results in the system with the 8600GT GPU and Fig. 3(b) displaying the timing results in the system with
the 8800GTX GPU. It should be noted that the serial processing times reported in Fig. 3 correspond to versions of N-FINDR
which have been carefully optimized in the two considered systems. Our experimental results indicate that the accuracy of
the parallel algorithm is very similar with regards to the original N-FINDR. Also, the parallel algorithm performs better with
latest-generation GPUs, thus taking advantage of the increased processing power of such units. Further experimentation with
additional hyperspectral scenes and GPU architectures is desirable.
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